Skip to main content
Log in

Payment behavior prediction on shared parking lots with TR-GCN

  • Special Issue Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

Shared parking lots are new types of sharing economy and generate a large social impact in our daily lives. Post-use payment is a hallmark method in the shared parking lots: it reflects trust in users and brings convenience to everyone. Accordingly, payment behavior prediction via data science technology becomes extremely important. We cooperate with a real intelligent parking platform, ThsParking, which is one of the top smart parking platforms in China, to study payment prediction, and encounter three challenges. First, we need to process a large volume of data generated every day. Second, a variety of parking related data shall be utilized to build the prediction model. Third, we need to consider the temporal characteristics of input data. In response, we propose TR-GCN, a temporal relational graph convolutional network for payment behavior prediction on shared parking lots, and we build a reminder to remind unpaid users. TR-GCN addresses the aforementioned challenges with three modules. 1) We develop an efficient data preprocessing module to extract key information from big data. 2) We build a GCN-based module with user association graphs from three different perspectives to describe the diverse hidden relations among data, including relations between user profile, temporal relations between parking patterns, and spatial relations between different parking lots. 3) We build an LSTM-based module to capture the temporal information from historical events. Experiments based on 50 real parking lots show that our TR-GCN achieves 91.2% accuracy, which is about 7% higher than the state-of-the-art and the reminder service makes more than half of the late-payment users pay, saving 1.9% loss for shared parking lots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. http://www.thsparking.com

  2. http://www.huaching.com

References

  1. Azayite, F. Z., Achchab, S.: The impact of payment delays on bankruptcy prediction: A comparative analysis of variables selection models and neural networks. In: International Conference of Cloud Computing Technologies and Applications, (2017)

  2. Babaev, D., Savchenko, M., Tuzhilin, A., Umerenkov, D.: ET-RNN: Applying Deep Learning to Credit Loan Applications. In SIGKDD, (2019)

  3. Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J. L., Silva, J.-P.: The expressive power of graph neural networks as a query language. SIGMOD Rec, (2020)

  4. Bergman, M., Milo, T., Novgorodov, S., Tan, W.-C.: Query-oriented data cleaning with oracles. In SIGMOD, (2015)

  5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach Learn. Res. 13(2), (2012)

  6. Chen, C., Chiang, R., Wu, T., Chu, H.: A combined mining-based framework for predicting telecommunications customer payment behaviors. Expert Systems Appl. (2013)

  7. Chen, L., Koutris, P., Kumar, A.: Towards model-based pricing for machine learning in a data marketplace. In: International Conference on Management of Data, (2019)

  8. Chen, Y.-L., Kuo, M.-H., Wu, S.-Y., Tang, K.: Discovering recency, frequency, and monetary (RFM) sequential patterns from customers’ purchasing data. Electron. Commerce Res. Appl., (2009)

  9. Cho, Y. S., Moon, S. C., Noh, S. C., Ryu, K. H.: Implementation of Personalized recommendation System using k-means Clustering of Item Category based on RFM. In: IEEE International Conference on Management of Innovation & Technology, (2012)

  10. Chu, K.-F., Lam, A. Y., Loo, B. P., Li, V. O.: Public Transport Waiting Time Estimation Using Semi-Supervised Graph Convolutional Networks. In IEEE Intelligent Transportation Systems Conference, (2019)

  11. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, (2014)

  12. Cini, A., Lukovic, S., Alippi, C.: Cluster-based Aggregate Load Forecasting with Deep Neural Networks. In: 2020 International Joint Conference on Neural Networks (IJCNN), (2020)

  13. Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., Bontempi, G.: Credit card fraud detection: a realistic modeling and a novel learning strategy. IEEE transactions on neural networks and learning systems, (2017)

  14. Dolatshah, M.: Cleaning crowdsourced labels using oracles for statistical classification. PhD thesis, Applied Sciences: School of Computing Science, (2018)

  15. Dong, G., Liu, H.: Feature engineering for machine learning and data analytics. CRC Press, NY (2018)

    Google Scholar 

  16. Donkers, T., Loepp, B., Ziegler, J.: Sequential user-based recurrent neural network recommendations. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, (2017)

  17. Fan, W., Xu, J., Wu, Y., Yu, W., Jiang, J.: GRAPE: Parallelizing sequential graph computations. In: Proceedings of the VLDB Endowment, (2017)

  18. Farha, Y. A., Gall, J.: Ms-tcn: Multi-stage temporal convolutional network for action segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2019)

  19. Feng, N., Zhang, F., Lin, J., Zhai, J., Du, X.: Statistical Analysis and Prediction of Parking Behavior. In: IFIP International Conference on Network and Parallel Computing, pages 93–104. Springer, (2019)

  20. Gao, J., Chen, J., Li, Z., Zhang, J.: ICS-GNN: lightweight interactive community search via graph neural network. PVLDB, (2021)

  21. Gers, F. A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction withLSTM. Neural Comput. 12(10), 2451–2471 (2000)

  22. Gopinath, R. A., Burrus, C. S.: On upsampling, downsampling, and rational sampling rate filter banks. IEEE Transactions on Signal Processing, (1994)

  23. Guo, C., Yang, B., Hu, J., Jensen, C. S., Chen, L.: Context-aware, preference-based vehicle routing. VLDB J. 29(5), 1149–1170 (2020)

  24. Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., Xie, D., Luo, H., Yao, S., Wang, Y., et al.: Ese: Efficient speech recognition engine with sparse LSTM on FPGA. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, (2017)

  25. Hovanesyan, A.: Late payment prediction of invoices through graph features. Master thesis, TDelft University of Technology, (2019)

  26. Huang, Z., Li, X., Ye, Y., Ng, M. K.: MR-GCN: Multi-Relational Graph Convolutional Networks based on Generalized Tensor Product. In IJCAI, (2020)

  27. Jiang, J., Dun, C., Huang, T., Lu, Z.: Graph convolutional reinforcement learning. arXiv preprint arXiv:1810.09202, (2018)

  28. Jin, Y., Guo, W., Zhang, Y.: A time-aware dynamic service quality prediction approach for services. Tsinghua Sci. Technol. 25(2), 227–238 (2019)

    Article  Google Scholar 

  29. Jou, R.-C., Chiou, Y.-C., Ke, J.-C.: Impacts of impression changes on freeway driver intention to adopt electronic toll collection service. Transp. Res. Part C Emerg. Technol., (2011)

  30. Kim, J., Kang, P.: Late payment prediction models for fair allocation of customer contact lists to call center agents. Decis. Support Syst. 85, 84–101 (2016)

    Article  Google Scholar 

  31. Kim, J.-Y., Cho, S.-B.: Predicting repayment of borrows in peer-to-peer social lending with deep dense convolutional network. Expert Syst. 36(4), e12403 (2019)

  32. Kipf, T. N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, (2016)

  33. Krishna, K., Murty, M. N.: Genetic K-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), (1999)

  34. Krishnan, S., Wang, J., Wu, E., Franklin, M. J., Goldberg, K.: Activeclean: Interactive data cleaning for statistical modeling. PVLDB, (2016)

  35. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, (2012)

  36. Kullback, S., Leibler, R. A.: On information and sufficiency. Ann. Math. Statist. 22(1), 79–86 (1951)

  37. Lea, C., Flynn, M. D., Vidal, R., Reiter, A., Hager, G. D.: Temporal convolutional networks for action segmentation and detection. In CVPR, (2017)

  38. Lerman, P.: Fitting segmented regression models by grid search. J. R. Statist. Soc. Ser. C (Applied Statistics), (1980)

  39. Li, L., Zheng, K., Wang, S., Hua, W., Zhou, X.: Go slow to go fast: minimal on-road time route scheduling with parking facilities using historical trajectory. VLDB J. 27(3), 321–345 (2018)

  40. Li, S., Li, W., Wang, W.: Co-GCN for Multi-View Semi-Supervised Learning. In AAAI, (2020)

  41. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, (2017)

  42. Lin, Z., Li, M., Zheng, Z., Cheng, Y., Yuan, C.: Self-Attention ConvLSTM for Spatiotemporal Prediction. In AAAI, (2020)

  43. Liu, H., Lu, S., Chen, X., He, B.: G3: when graph neural networks meet parallel graph processing systems on GPUs. In: Proceedings of the VLDB Endowment, (2020)

  44. Liu, Z., Chen, C., Yang, X., Zhou, J., Li, X., Song, L.: Heterogeneous graph neural networks for malicious account detection. In CIKM, (2018)

  45. Maaten, L. V. d., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Rese (2008)

  46. Magdy, A., Abdelhafeez, L., Kang, Y., Ong, E., Mokbel, M. F.: Microblogs data management: a survey. VLDB J. 29(1), 177–216 (2020)

  47. Manessi, F., Rozza, A., Manzo, M.: Dynamic graph convolutional networks. Pattern Recognit. 97, 107000 (2020)

  48. Meehan, J., Aslantas, C., Zdonik, S., Tatbul, N., Du, J.: Data Ingestion for the Connected World. In CIDR, (2017)

  49. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh annual conference of the international speech communication association, (2010)

  50. Nainggolan, R., Perangin-angin, R., Simarmata, E., Tarigan, A. F.: Improved the Performance of the K-Means Cluster Using the Sum of Squared Error (SSE) optimized by using the Elbow Method. In: Journal of Physics: Conference Series, (2019)

  51. Pan, Z., Zhang, F., Li, H., Zhang, C., Du, X., Deng, D.: G-SLIDE: A GPU-Based Sub-Linear Deep Learning Engine via LSH Sparsification. IEEE TPDS, (2021)

  52. Pan, Z., Zhang, F., Zhou, Y., Zhai, J., Shen, X., Mutlu, O., Du, X.: Exploring data analytics without decompression on embedded GPU systems. IEEE TPDS 33(7), 1553–1568 (2021)

    Google Scholar 

  53. A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. B. Schardl, and C. E. Leiserson. EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In AAAI, (2020)

  54. Paul, D., Li, F., Phillips, J. M.: Semantic embedding for regions of interest. The VLDB J., (2021)

  55. Pfohl, H.-C., Gomm, M.: Supply chain finance: optimizing financial flows in supply chains. Logisti. Res. 1(3-4), 149–161 (2009)

  56. Ramachandran, P., Zoph, B., Le, Q. V.: Searching for activation functions. arXiv preprint arXiv:1710.05941, (2017)

  57. Ringnér, M.: What is principal component analysis? Nature Biotechnology, (2008)

  58. Salha, G., Hennequin, R., Vazirgiannis, M.: Keep it simple: Graph autoencoders without graph convolutional networks. arXiv preprint arXiv:1910.00942, (2019)

  59. Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: European Semantic Web Conference, (2018)

  60. Sikka, N., Vila, C., Stratton, M., Ghassemi, M., Pourmand, A.: Sharing the sidewalk: a case of E-scooter related pedestrian injury. Am. J. Emergency Med., (2019)

  61. Song, K., Jang, J., Shin, S., Moon, I.: Bivariate Beta-LSTM. In AAAI, (2020)

  62. Stehman, S. V.: Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 62(1), 77–89 (1997)

  63. Steinberg, D., Colla, P.: Cart: classification and regression trees. The top ten algorithms in data mining, (2009)

  64. Sundararajan, A.: From Zipcar to the sharing economy. Harvard business Review, 1(1), 1–2 (2013)

  65. Tam, D. S. H., Lau, W. C., Hu, B., Ying, Q. F., Chiu, D. M., Liu, H.: Identifying Illicit Accounts in Large Scale E-payment Networks–A Graph Representation Learning Approach. arXiv:1906.05546, (2019)

  66. Wang, C., Caja, J., Gómez, E.: Comparison of methods for outlier identification in surface characterization. Measurement, 117, 312–325 (2018)

  67. Wang, W., Guo, J., Li, Z., Zhao, R.: Behavior model construction for client side of modern web applications. Tsinghua Sci. Technol. 26(1), 112–134 (2020)

    Article  Google Scholar 

  68. Wen, Y. T., Yeh, P. W., Tsai, T. H., Peng, W. C., Shuai, H. H.: Customer Purchase Behavior Prediction from Payment Datasets. In: Eleventh ACM International Conference on Web Search & Data Mining, (2018)

  69. Weytjens, H., Lohmann, E., Kleinsteuber, M.: Cash flow prediction: MLP and LSTM compared to ARIMA and Prophet. Electronic Commerce Research, (2019)

  70. Wu, J., Si, S., Yan, H.: Reducing poverty through the shared economy: creating inclusive entrepreneurship around institutional voids in China. Asian Business Management, 1–29 (2020)

  71. Xiong, W., Hoang, T., Wang, W. Y.: Deeppath: A reinforcement learning method for knowledge graph reasoning. arXiv:1707.06690, (2017)

  72. D. Xu, W. Cheng, B. Zong, D. Song, J. Ni, W. Yu, Y. Liu, H. Chen, and X. Zhang. Tensorized LSTM with Adaptive Shared Memory for Learning Trends in Multivariate Time Series. In AAAI, (2020)

  73. Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., Achan, K.: Inductive Representation Learning on Temporal Graphs. arXiv:2002.07962, (2020)

  74. Xu, Q., Zhang, F., Zhang, M., Zhai, J., Lin, J., Liu, H., Du, X.: Payment Behavior Prediction and Statistical Analysis for Shared Parking Lots. In: IFIP International Conference on Network and Parallel Computing, (2020)

  75. Xu, Y., Yang, J., Du, S.: CF-LSTM: Cascaded Feature-Based Long Short-Term Networks for Predicting Pedestrian Trajectory. In AAAI, (2020)

  76. Yang, S., Ma, W., Pi, X., Qian, S.: A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources. Transp. Res. Part C Emerg. Technol. 107, 248–265 (2019)

  77. Yang, Y., Liu, Z., Tan, C., Wu, F., Zhuang, Y., Li, Y.: To stay or to leave: Churn prediction for urban migrants in the initial period. In WWW, (2018)

  78. Yu, W., He, X., Pei, J., Chen, X., Xiong, L., Liu, J., Qin, Z.: Visually aware recommendation with aesthetic features. VLDB J. 1–19 (2021)

  79. Zhang, F., Chen, Z., Zhang, C., Zhou, A.C., Zhai, J., Du, X.: An efficient parallel secure machine learning framework on GPUs. IEEE Trans. Parallel Distrib. Syst. 32(9), 2262–2276 (2021)

    Article  Google Scholar 

  80. F. Zhang, N. Feng, Y. Liu, C. Yang, J. Zhai, S. Zhang, B. He, J. Lin, and X. Du. PewLSTM: Periodic LSTM with Weather-Aware Gating Mechanism for Parking Behavior Prediction. In IJCAI, 2020

  81. F. Zhang, Y. Liu, N. Feng, C. Yang, J. Zhai, S. Zhang, B. He, J. Lin, X. Zhang, and X. Du. Periodic Weather-Aware LSTM with Event Mechanism for Parking Behavior Prediction. TKDE, 2021

  82. Zhang, F., Zhai, J., He, B., Zhang, S., Chen, W.: Understanding co-running behaviors on integrated CPU/GPU architectures. IEEE Trans. Parallel Distrib. Syst. 28(3), 905–918 (2016)

    Article  Google Scholar 

  83. Zhang, F., Zhai, J., Shen, X., Mutlu, O., Du, X.: POCLib: a high-performance framework for enabling near orthogonal processing on compression. IEEE Trans. Parallel Distrib. Syst. 33(2), 459–475 (2022)

    Article  Google Scholar 

  84. Zhang, F., Zhai, J., Shen, X., Wang, D., Chen, Z., Mutlu, O., Chen, W., Du, X.: TADOC: text analytics directly on compression. VLDB J 30(2), 163–188 (2021)

    Article  Google Scholar 

  85. Zhang, H., Wang, X., Chen, J., Wang, C., Li, J.: D2D-LSTM: LSTM-Based Path Prediction of Content Diffusion Tree in Device-to-Device Social Networks. In AAAI, (2020)

  86. Zhang, J., Zhou, K., Li, G., Liu, Y., Xie, M., Cheng, B., Xing, J.: CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system. The VLDB Journal, (2021)

  87. Zhang, L., Ma, D., Zhang, X., Yan, X., Wang, H.: Graph LSTM with Context-Gated Mechanism for Spoken Language Understanding. In AAAI, (2020)

  88. Zhang, W., Liu, H., Liu, Y., Zhou, J., Xiong, H.: Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction. In AAAI, (2020)

  89. Zhang, W., Miao, X., Shao, Y., Jiang, J., Chen, L., Ruas, O., Cui, B.: Reliable Data Distillation on Graph Convolutional Network. In SIGMOD, (2020)

  90. Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., Li, H.: T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, (2019)

  91. Zhao, Z., Chen, W., Wu, X., Chen, P. C., Liu, J.: LSTM network: a deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 11(2), 68–75 (2017)

  92. Zheng, L., Li, Z., Li, J., Li, Z., Gao, J.: AddGraph: Anomaly Detection in Dynamic Graph Using Attention-based Temporal GCN. In IJCAI, (2019)

  93. Zhong, W., Yu, N., Ai, C.: Applying big data based deep learning system to intrusion detection. Big Data Min. Anal. 3(3), 181–195 (2020)

    Article  Google Scholar 

  94. Zhou, X., Chen, L., Zhang, Y., Qin, D., Cao, L., Huang, G., Wang, C.: Enhancing online video recommendation using social user interactions. VLDB J. 26(5), 637–656 (2017)

  95. Zhu, H., Vial, R., Lu, S.: Tornado: A spatio-temporal convolutional regression network for video action proposal. In: Proceedings of the IEEE International Conference on Computer Vision, (2017)

  96. Zhu, R., Zhao, K., Yang, H., Lin, W., Zhou, C., Ai, B., Li, Y., Zhou, J.: AliGraph: A Comprehensive Graph Neural Network Platform. Proc. VLDB Endow., (2019)

  97. Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., Wu, J.: Embedding temporal network via neighborhood formation. In SIGKDD, (2018)

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (2020AAA0105200), National Natural Science Foundation of China (No. 61732014, 62172419, U20A20226, and 61802412), Tsinghua University Initiative Scientific Research Program (20191080594), and GHfund A (No. 20210701). This work is also sponsored by CCF-Tencent Open Research Fund. Bingsheng’s work is in part supported by a research project grant under NUS Centre for Trusted Internet and Community. Feng Zhang is the corresponding author of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Zhang, F., Zhang, M. et al. Payment behavior prediction on shared parking lots with TR-GCN. The VLDB Journal 31, 1035–1058 (2022). https://doi.org/10.1007/s00778-021-00722-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-021-00722-0

Navigation