Skip to main content
Log in

RNE: computing shortest paths using road network embedding

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

Computing the shortest paths and shortest path distances between two vertices on road networks is a core operation in many real-world applications, e.g., finding the closest taxi/hotel. However, existing techniques have several limitations. First, traditional Dijkstra-based methods have long latency and cannot meet the high-performance requirement. Second, existing indexing-based methods either involve huge index sizes or have poor performance. To address these limitations, in this paper we propose a learning-based method RNE which can efficiently compute an approximate shortest-path distance such that (1) the performance is super fast, e.g., taking 60–150 nanoseconds; (2) the error ratio of the approximate results is super small, e.g., below 0.7%; (3) scales well to large road networks, e.g., millions of nodes. The key idea is to first embed the road networks into a low dimensional space for capturing the distance relations between vertices, get an embedded vector for each vertex, and then perform a distance metric (\(L_1\) metric) on the embedded vectors to approximate shortest-path distances. We propose a hierarchical model to represent the embedding, and design an effective method to train the model. We also design a fine-tuning method to judiciously select high-quality training data. In order to identify the shortest path between two vertices (not just the distance), we extend the vertex embedding from RNE and design the RNE+ model, which can output the approximate shortest path with low error and high efficiency. We also propose effective techniques to accelerate the training process of RNE+, including embedding pre-training, negative sampling and model fine-tuning. Extensive experiments on real-world datasets show that RNE and RNE+ significantly outperform the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abeywickrama, T., Cheema, M.A., Taniar, D.: K-nearest neighbors on road networks: a journey in experimentation and in-memory implementation. VLDB 9(6), 492–503 (2016)

    Google Scholar 

  2. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest paths in road networks. In: International symposium on experimental algorithms. Springer, pp. 230–241 (2011)

  3. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for shortest paths. In: European Symposium on Algorithms (2012)

  4. Aumann, Y., Rabani, Y.: An o (log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27(1), 291–301 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route planning in transportation networks. In: Algorithm engineering, pp. 19–80 (2016)

  6. Bialek, W., Nemenman, I., Tishby, N.: Predictability, complexity, and learning. Neural Comput. 13(11), 2409–2463 (2001)

    Article  Google Scholar 

  7. Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52(1–2), 46–52 (1985)

    Article  MathSciNet  Google Scholar 

  8. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: Harp: Hierarchical representation learning for networks. In: Proceedings of the AAAI conference on artificial intelligence (2018)

  9. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: hardware-accelerated shortest path trees. J. Parallel Distrib. Comput. 73(7), 940–952 (2013)

    Article  Google Scholar 

  10. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.F.: PHAST: hardware-accelerated shortest path trees. In: IPDPS (2011)

  11. Deza, M.M., Laurent, M.: Geometry of cuts and metrics. Algorithms and combinatorics 15, pp. 1-587 ISBN 978-3-540-61611-5, Springer (1997)

  12. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: International workshop on experimental and efficient algorithms, pp. 319–333 (2008)

  13. Geisberger, R., Schieferdecker, D.: Heuristic contraction hierarchies with approximation guarantee. In: Third annual symposium on combinatorial search (2010)

  14. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a search meets graph theory. In: SODA, pp. 156–165. Society for Industrial and Applied Mathematics (2005)

  15. Goldberg, A.V., Werneck, R.F.F.: Computing point-to-point shortest paths from external memory. In: ALENEX/ANALCO, pp. 26–40 (2005)

  16. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: KDD, pp. 855–864 (2016)

  17. Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and l1-embeddings of graphs. Combinatorica 24(2), 233–269 (2004)

    Article  MathSciNet  Google Scholar 

  18. Haitao, Y., Guoliang, Li.: A survey of traffic prediction: from spatio-temporal data to intelligent Transportation. Data. Sci. Eng. 6(1), 63-85 (2021). https://doi.org/10.1007/s41019-020-00151-z

  19. Karypis, G., Kumar, V.: Analysis of multilevel graph partitioning. In Supercomputing, pp. 29–29. IEEE (1995)

  20. Klein, P., Rao, S., Agrawal, A., Ravi, R.: An approximate max-flow min-cut relation for undirected multicommodity flow, with applications. Combinatorica 15(2), 187–202 (1995)

    Article  MathSciNet  Google Scholar 

  21. Kriegel, H.-P., Kröger, P., Kunath, P., Renz, M., Schmidt, T.: Proximity queries in large traffic networks. In: GIS, p. 21. ACM (2007)

  22. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM (JACM) 46(6), 787–832 (1999)

    Article  MathSciNet  Google Scholar 

  23. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems, pp. 3111–3119 (2013)

  24. Ouyang, D., Qin, L., Chang, L., Lin, X., Zhang, Y., Zhu, Q.: When hierarchy meets 2-hop-labeling: efficient shortest distance queries on road networks. In: SIGMOD, pp. 709–724 (2018)

  25. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: KDD, pp. 701–710. ACM (2014)

  26. Rao, S.: Small distortion and volume preserving embeddings for planar and Euclidean metrics. In Proceedings of the fifteenth annual symposium on Computational geometry, pp. 300–306. ACM (1999)

  27. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: SIGMOD, pp. 43–54. ACM (2008)

  28. Sankaranarayanan, J., Samet, H.: Query processing using distance oracles for spatial networks. IEEE TKDE 22(8), 1158–1175 (2010)

    Google Scholar 

  29. Shahabi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road network embedding technique for k-nearest neighbor search in moving object databases. GeoInformatica 7(3), 255–273 (2003)

    Article  Google Scholar 

  30. Shen, B., Zhao, Y., Li, G., Zheng, W., Qin, Y., Yuan, B., Rao, Y.: V-tree: efficient KNN search on moving objects with road-network constraints. In: ICDE, pp. 609–620. IEEE (2017)

  31. Shiwen, W., Yuanxing, Z., Chengliang, G., Kaigui, B., Bin, C.: GARG: Anonymous Recommendation of Point-of-Interest in Mobile Networks by Graph Convolution Network. Data. Sci. Eng. 5(4), 433–447 (2020). https://doi.org/10.1007/s41019-020-00135-z

  32. Ta, N., Li, G., Zhao, T., Feng, J., Ma, H., Gong, Z.: An efficient ride-sharing framework for maximizing shared route. IEEE Trans. Knowl. Data Eng. 30(2), 219–233 (2017)

    Article  Google Scholar 

  33. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: WWW. International World Wide Web conferences steering committee, pp. 1067–1077 (2015)

  34. Wang, Y., Li, G., Tang, N.: Querying shortest paths on time dependent road networks. VLDB 12(11), 1249–1261 (2019)

    Google Scholar 

  35. Wu, L., Xiao, X., Deng, D., Cong, G., Zhu, A.D., Zhou, S.: Shortest path and distance queries on road networks: an experimental evaluation. VLDB 5(5), 406–417 (2012)

    Google Scholar 

  36. You, J., Ying, R., Leskovec, J.: Position-aware graph neural networks. In: International conference on machine learning, pp. 7134–7143. PMLR (2019)

  37. Zhong, R., Li, G., Tan, K.-L., Zhou, L.: G-tree: An efficient index for KNN search on road networks. In CIKM, pp. 39–48. ACM, 2013

  38. Zhong, R., Li, G., Tan, K.-L., Zhou, L., Gong, Z.: G-tree: an efficient and scalable index for spatial search on road networks. IEEE TKDE 27(8), 2175–2189 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by NSF of China (61925205, 61632016, 62102215), Huawei, TAL education, China National Postdoctoral Program for Innovative Talents (BX2021155), China Postdoctoral Science Foundation (2021M691784), and Zhejiang Lab’s International Talent Fund for Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Huang, S., Wang, Y. et al. RNE: computing shortest paths using road network embedding. The VLDB Journal 31, 507–528 (2022). https://doi.org/10.1007/s00778-021-00705-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-021-00705-1

Keywords

Navigation