Abstract
Complex event recognition (CER) systems have become popular in the past two decades due to their ability to “instantly” detect patterns on real-time streams of events. However, there is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine. We present a formal framework that attempts to address the issue of complex event forecasting (CEF). Our framework combines two formalisms: (a) symbolic automata which are used to encode complex event patterns and (b) prediction suffix trees which can provide a succinct probabilistic description of an automaton’s behavior. We compare our proposed approach against state-of-the-art methods and show its advantage in terms of accuracy and efficiency. In particular, prediction suffix trees, being variable-order Markov models, have the ability to capture long-term dependencies in a stream by remembering only those past sequences that are informative enough. We also discuss how CEF solutions should be best evaluated on the quality of their forecasts.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
The report may be found here: https://arxiv.org/abs/2109.00287.
References
Abe, N., Warmuth, M.K.: On the computational complexity of approximating distributions by probabilistic automata. Mach. Learn. 9, 205–260 (1992)
Akbar, A., Carrez, F., Moessner, K., Zoha, A.: Predicting complex events for pro-active iot applications. In: WF-IoT, pp. 327–332. IEEE Computer Society (2015)
Alevizos, E., Artikis, A., Paliouras, G.: In: DEBS (ed.) Event Forecasting with Pattern Markov Chains, pp. 146–157. ACM (2017)
Alevizos, E., Artikis, A., Paliouras, G.: Wayeb: a tool for complex event forecasting. In: LPAR, EPiC Series in Computing, vol. 57, pp. 26–35. EasyChair (2018)
Alevizos, E., Skarlatidis, A., Artikis, A., Paliouras, G.: Probabilistic complex event recognition: A survey. ACM Comput. Surv. 50(5), 71:1-71:31 (2017)
Artikis, A., Katzouris, N., Correia, I., Baber, C., Morar, N., Skarbovsky, I., Fournier, F., Paliouras, G.: A prototype for credit card fraud management: industry paper. In: DEBS, pp. 249–260. ACM (2017)
Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order Markov models. J. Artif. Intell. Res. 22, 385–421 (2004)
Chang, B., Park, Y., Park, D., Kim, S., Kang, J.: Content-aware hierarchical point-of-interest embedding model for successive POI recommendation. In: IJCAI, pp. 3301–3307. ijcai.org (2018)
Cho, C., Wu, Y., Yen, S., Zheng, Y., Chen, A.L.P.: On-line rule matching for event prediction. VLDB J. 20(3), 303–334 (2011)
Christ, M., Krumeich, J., Kempa-Liehr, A.W.: In: EDOC Workshops (ed.) Integrating Predictive Analytics into Complex Event Processing by Using Conditional Density Estimations, pp. 1–8. IEEE Computer Society (2016)
Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)
Cugola, G., Margara, A.: Processing flows of information: From data stream to complex event processing. ACM Comput. Surv. 44(3), 15:1-15:62 (2012)
D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. In: CAV (1), Lecture Notes in Computer Science, vol. 10426, pp. 47–67. Springer (2017)
Engel, Y., Etzion, O.: In: DEBS (ed.) Towards proactive event-driven computing, pp. 125–136. ACM (2011)
Fu, J.C., Lou, W.W.: Distribution Theory of Runs and Patterns and Its Applications: A Finite Markov Chain Imbedding Approach. World Scientific, Singapore (2003)
Fülöp, L.J., Beszédes, Á., Toth, G., Demeter, H., Vidács, L., Farkas, L.: Predictive complex event processing: a conceptual framework for combining complex event processing and predictive analytics. In: BCI, pp. 26–31. ACM (2012)
Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., Garofalakis, M.N.: Complex event recognition in the big data era: a survey. VLDB J. 29(1), 313–352 (2020)
Grez, A., Riveros, C., Ugarte, M.: A formal framework for complex event processing. In: ICDT, LIPIcs, vol. 127, pp. 5:1–5:18. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)
Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Pearson International Edition, 3rd edn. Addison-Wesley, London (2007)
Laxman, S., Tankasali, V., White, R.W.: Stream prediction using a generative model based on frequent episodes in event sequences. In: KDD, pp. 453–461. ACM (2008)
Li, Y., Ge, T., Chen, C.: Data stream event prediction based on timing knowledge and state transitions. Proc. VLDB Endow. 13, 10 (2020)
Li, Z., Ding, X., Liu, T.: Constructing narrative event evolutionary graph for script event prediction. In: IJCAI, pp. 4201–4207. ijcai.org (2018)
Makridakis, S., Spiliotis, E., Assimakopoulos, V.: Statistical and machine learning forecasting methods: concerns and ways forward. PLoS ONE 13(3), e0194889 (2018)
Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018)
Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to Time Series Analysis and Forecasting. Wiley, New York (2015)
Muthusamy, V., Liu, H., Jacobsen, H.: In: DEBS (ed.) Predictive Publish/Subscribe Matching, pp. 14–25. ACM (2010)
Ozik, J., Collier, N., Heiland, R., An, G., Macklin, P.: Learning-accelerated discovery of immune-tumour interactions. Mol. Syst. Des. Eng. 4(4), 747–760 (2019)
Pandey, S., Nepal, S., Chen, S.: A test-bed for the evaluation of business process prediction techniques. In: CollaborateCom, pp. 382–391. ICST/IEEE (2011)
Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., Theodoridis, Y.: Online event recognition from moving vessel trajectories. GeoInformatica 21(2), 389–427 (2017)
Patroumpas, K., Spirelis, D., Chondrodima, E., Georgiou, H., P, P., P, T., S, S., N, P., Y, T.: Final dataset of Trajectory Synopses over AIS kinematic messages in Brest area (ver. 0.8) [Data set], 10.5281/zenodo.2563256 (2018). https://doi.org/10.5281/zenodo.2563256. http://doi.org/10.5281/zenodo.2563256
Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)
Ray, C., Dreo, R., Camossi, E., Jousselme, A.: Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance (2018). https://doi.org/10.5281/zenodo.1167595
Ron, D., Singer, Y., Tishby, N.: In: NIPS (ed.) The power of amnesia, pp. 176–183. Morgan Kaufmann (1993)
Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic automata with variable memory length. Mach. Learn. 25(2–3), 117–149 (1996)
Smile-statistical machine intelligence and learning engine. http://haifengl.github.io/
Van Der Aalst, W.: Process Mining: Discovery. Conformance and Enhancement of Business Processes. Springer, Berlin (2011)
van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)
Veanes, M., de Halleux, P., Tillmann, N.: Rex. In: ICST (ed) Symbolic Regular Expression Explorer, pp. 498–507. IEEE Computer Society (2010)
Vilalta, R., Ma, S.: In: ICDM (ed) Predicting Rare Events in Temporal Domains, pp. 474–481. IEEE Computer Society (2002)
Vouros, G.A., Vlachou, A., Santipantakis, G.M., Doulkeridis, C., Pelekis, N., Georgiou, H.V., Theodoridis, Y., Patroumpas, K., Alevizos, E., Artikis, A., Claramunt, C., Ray, C., Scarlatti, D., Fuchs, G., Andrienko, G.L., Andrienko, N.V., Mock, M., Camossi, E., Jousselme, A., Garcia, J.M.C.: Big data analytics for time critical mobility forecasting: recent progress and research challenges. In: EDBT, pp. 612–623. OpenProceedings.org (2018)
Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting method: basic properties. IEEE Trans. Inf. Theory 41(3), 653–664 (1995)
Zhou, C., Cule, B., Goethals, B.: A pattern based predictor for event streams. Expert Syst. Appl. 42(23), 9294–9306 (2015)
Acknowledgements
This work has received funding from the EU Horizon 2020 research and innovation program INFORE under Grant Agreement No. 825070.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alevizos, E., Artikis, A. & Paliouras, G. Complex event forecasting with prediction suffix trees. The VLDB Journal 31, 157–180 (2022). https://doi.org/10.1007/s00778-021-00698-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00778-021-00698-x