Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Proceedings of International Conference on Foundations of Data Organization and Algorithms, pp. 69–84. Springer, Boston, MA (1993)
Chen, C.L.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)
Article
Google Scholar
Dau, H.A., Keogh, E., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi, S., Ratanamahatana, C.A., Yanping, Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G., Hexagon, M.L.: The UCR time series classification archive. https://www.cs.ucr.edu/~eamonn/time_series_data_2018 (2018)
Edstrom, J., Chen, D., Gong, Y., Wang, J., Gong, N.: Data-pattern enabled self-recovery low-power storage system for big video data. IEEE Trans. Big Data 5(1), 95–105 (2019)
Article
Google Scholar
Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. 45(1), 12:1–34 (2012)
Article
Google Scholar
Fu, T.C.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)
Article
Google Scholar
Grabocka, J., Wistuba, M., Schmidt-Thieme, L.: Fast classification of univariate and multivariate time series through shapelet discovery. Knowl. Inf. Syst. 49(2), 429–454 (2016)
Article
Google Scholar
Guttman, A.: (1984) R-trees: A dynamic index structure for spatial searching. In: ACM Sigmod International Conference on Management of Data, pp. 47–57. ACM, New York, NY (2018)
He, H., Tan, Y.: Unsupervised classification of multivariate time series using VPCA and fuzzy clustering with spatial weighted matrix distance. IEEE Trans. Cybern. 50(3), 1096–1105 (2020)
Article
Google Scholar
Hu, J., Yang, B., Guo, C., Jensen, C.S.: Risk-aware path selection with time-varying, uncertain travel costs: A time series approach. VLDB J. 27(2), 179–200 (2018)
Article
Google Scholar
Ignatov, A.: Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl. Soft Comput. 62, 915–922 (2018)
Article
Google Scholar
Itakura, F.: Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech Signal Process. 23(1), 67–72 (1975)
Article
Google Scholar
Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of time series using a fuzzy quantifier driven aggregation. Fuzzy Sets Syst. 159(12), 1485–1499 (2008)
MathSciNet
Article
Google Scholar
Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)
Article
Google Scholar
Keogh, E., Wei, L., Xi, X., Vlachos, M., Lee, S.H., Protopapas, P.: Supporting exact indexing of arbitrarily rotated shapes and periodic time series under Euclidean and warping distance measures. VLDB J. 18(3), 611–630 (2009)
Article
Google Scholar
Lemire, D.: Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern Recogn. 42, 2169–2180 (2009)
Article
Google Scholar
Li, H., Yang, L.: Extensions and relationships of some existing lower-bound functions for dynamic time warping. J., Intell. Inf. Syst. 43(1), 59–79 (2014)
Article
Google Scholar
Li, Q., Chen, Y., Wang, J., Chen, Y., Chen, H.C.: Web media and stock markets: A survey and future directions from a big data perspective. IEEE Trans. Knowl. Data Eng. 30(2), 381–399 (2018)
Article
Google Scholar
Lin, S.C., Yeh, M.Y., Chen, M.S.: Non-overlapping subsequence matching of stream synopses. IEEE Trans. Knowl. Data Eng. 30(1), 101–114 (2018)
Article
Google Scholar
Liu, M., Zhang, X., Xu, G.: Continuous motion classification and segmentation based on improved dynamic time warping algorithm. Int. J. Pattern Recognit Artif Intell. 32(2), 1850,002 (2018)
MathSciNet
Article
Google Scholar
Mikalsen, K.Ø., Bianchi, F.M., Soguero-Ruiz, C., Jenssen, R.: Time series cluster kernel for learning similarities between multivariate time series with missing data. Pattern Recogn. 76, 569–581 (2018)
Article
Google Scholar
Mondal, T., Ragot, N., Ramel, J.Y., Pal, U.: Comparative study of conventional time series matching techniques for word spotting. Pattern Recogn. 73, 47–64 (2018)
Article
Google Scholar
Mori, U., Mendiburu, A., Lozano, J.A.: Similarity measure selection for clustering time series databases. IEEE Trans. Knowl. Data Eng. 28(1), 181–195 (2016)
Article
Google Scholar
Mueen, A., Chavoshi, N., Abu-El-Rub, N., Hamooni, H., Minnich, A., MacCarthy, J.: Speeding up dynamic time warping distance for sparse time series data. Knowl. Inf. Syst. 54(1), 237–263 (2018)
Article
Google Scholar
Mueen, A., Keogh, E.: Extracting optimal performance from dynamic time warping. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2129–2130. ACM, New York, NY (2016)
Park, S., Lee, D., Chu, W.W.: Fast retrieval of similar subsequences in long sequence databases. In: Proceedings of 1999 Workshop on Knowledge and Data Engineering Exchange, pp. 60–67. IEEE, Chicago, IL (1999)
Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., Keogh, E.: Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 262–270. ACM, New York, NY (2012)
Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)
Article
Google Scholar
Shen, Y., Chen, Y., Keogh, E., Jin, H.: Accelerating time series searching with large uniform scaling. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 234–242. SIAM, Bologna, Italy (2018)
Son, N.T., Anh, D.T.: Discovery of time series \(k\)-motifs based on multidimensional index. Knowl. Inf. Syst. 46(1), 59–86 (2016)
Article
Google Scholar
Sun, T., Liu, H., Yu, H., Chen, C.L.P.: Degree-pruning dynamic planning approaches to central time series through minimizing dynamic time warping distance. IEEE Trans. Cybern. 47(7), 1719–1729 (2017)
Article
Google Scholar
Tan, C.W., Petitjean, F., Webb, G.: Elastic bands across the path: a new framework and method to lower bound DTW. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 522–530. SIAM, Alberta, Canada (2019)
Tan, C.W., Webb, G.I., Petitjean, F.: Indexing and classifying gigabytes of time series under time warping. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 282–290. SIAM, Houston, TX (2017)
Tan, Z., Wang, Y., Zhang, Y., Zhou, J.: A novel time series approach for predicting the long-term popularity of online videos. IEEE Trans. Broadcast. 62(2), 436–445 (2016)
Article
Google Scholar
Tang, J., Cheng, H., Zhao, Y., Guo, H.: Structured dynamic time warping for continuous hand trajectory gesture recognition. Pattern Recogn. 80, 21–31 (2018)
Article
Google Scholar
Wu, X., Zhu, X., Wu, G., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)
Article
Google Scholar
Wu, Y., Tong, Y., Zhu, X., Wu, X.: NOSEP: Nonoverlapping sequence pattern mining with gap constraints. IEEE Trans. Cybern. 48(10), 2809–2822 (2018)
Article
Google Scholar
Yi, B.K., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: Proceedings of the 14th International Conference on Data Engineering, pp. 201–208. IEEE, Orlando, FL (1998)
Zhou, M., Wong, M.H.: Boundary-based lower-bound functions for dynamic time warping and their indexing. Inf. Sci. 181(19), 4175–4196 (2011)
Article
Google Scholar
Zoumpatianos, K., Lou, Y., Ileana, I., Palpanas, T., Gehrke, J.: Generating data series query workloads. VLDB J. 27(6), 823–846 (2018)
Article
Google Scholar