Making data visualization more efficient and effective: a survey

Abstract

Data visualization is crucial in today’s data-driven business world, which has been widely used for helping decision making that is closely related to major revenues of many industrial companies. However, due to the high demand of data processing w.r.t. the volume, velocity, and veracity of data, there is an emerging need for database experts to help for efficient and effective data visualization. In response to this demand, this article surveys techniques that make data visualization more efficient and effective. (1) Visualization specifications define how the users can specify their requirements for generating visualizations. (2) Efficient approaches for data visualization process the data and a given visualization specification, which then produce visualizations with the primary target to be efficient and scalable at an interactive speed. (3) Data visualization recommendation is to auto-complete an incomplete specification, or to discover more interesting visualizations based on a reference visualization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. 1.

    Note that, our pipeline and terminologies used in this paper are slightly different than those used in the visualization community. Please refer to https://infovis-wiki.net/wiki/Visualization_Pipeline for more details.

  2. 2.

    https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Tools.pdf.

  3. 3.

    https://www.tableau.com/about/blog/2018/11/ask-data-simplifying-analytics-natural-language-98655.

References

  1. 1.

    Michael, B., Vadim, O., Jeffrey, H.: D3: Data-driven documents. TVCG 17(12), 2301–9 (2011)

    Google Scholar 

  2. 2.

    Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-lite: a grammar of interactive graphics. TVCG 23(1), 341–350 (2016)

    Google Scholar 

  3. 3.

    Hanrahan, P.: Vizql: a language for query, analysis and visualization. In: SIGMOD, p. 721 (2006)

  4. 4.

    Tableau. https://www.tableau.com. Accessed 31 Dec 2018

  5. 5.

    Power bi: Interactive data visualization bi tools. https://powerbi.microsoft.com. Accessed 31 Dec 2018

  6. 6.

    Hyper: A hybrid oltp and olap high performance dbms. https://hyper-db.de. Accessed 31 Dec 2018

  7. 7.

    Neumann, T., Mühlbauer, T., Kemper, A.: Fast serializable multi-version concurrency control for main-memory database systems. In: SIGMOD, pp. 677–689 (2015)

  8. 8.

    Neumann, T.: Efficiently compiling efficient query plans for modern hardware. PVLDB 4(9), 539–550 (2011)

    Google Scholar 

  9. 9.

    Microsoft excel. https://products.office.com/en-us/excel. Accessed 31 Dec 2018

  10. 10.

    Google sheets: Free online spreadsheets for personal use. https://www.google.com/sheets/about/. Accessed 31 Dec 2018

  11. 11.

    Oracle data visualization desktop. https://docs.oracle.com/en/middleware/bi/data-visualization-desktop/tutorials.html. Accessed 31 Dec 2018

  12. 12.

    Ibm db2. https://www.ibm.com/analytics/db2. Accessed 31 Dec 2018

  13. 13.

    Amazon quicksight: Cloud based business intelligence. https://aws.amazon.com/quicksight/. Accessed 31 Dec 2018

  14. 14.

    Vega: A visualization grammar. https://vega.github.io/vega/. Accessed 31 Dec 2018

  15. 15.

    Wickham, H.: ggplot2–elegant graphics for data analysis. J Comput. Graph. Stat. 19(1), 3–28 (2009)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Li, D., Mei, H., Shen, Y., Su, S., Zhang, W., Wang, J., Zu, M., Chen, W.: ECharts: A declarative framework for rapid construction of web-based visualization. Vis. Inform. 2, 136–146 (2018)

    Google Scholar 

  17. 17.

    Luo, Y., Qin, X., Tang, N., Li, G.: DeepEye: towards automatic data visualization. In: ICDE, pp. 101–112 (2018)

  18. 18.

    Siddiqui, T., Lee, J., Kim, A., Xue, E., Yu, X., Zou, S., Guo, L., Liu, C., Wang, C., Karahalios, K., Parameswaran, A.G.: Fast-forwarding to desired visualizations with zenvisage. In: CIDR (2017)

  19. 19.

    Kalinin, A., Cetintemel, U., Zdonik, S.: Interactive data exploration using semantic windows. In: SIGMOD, pp. 505–516 (2014)

  20. 20.

    Stolte, C., Hanrahan, P.: Polaris: a system for query, analysis and visualization of multi-dimensional relational databases. In: INFOVIS, pp. 5–14 (2000)

  21. 21.

    Qin, X., Luo, Y., Tang, N., Li, G.: DeepEye: an automatic big data visualization framework. Big Data Min. Anal. 1(1), 75–82 (2018)

    Google Scholar 

  22. 22.

    Vartak, M., Madden, S., Parameswaran, A., Polyzotis, N.: Seedb: automatically generating query visualizations. PVLDB 7(13), 1581–1584 (2014)

    Google Scholar 

  23. 23.

    Vartak, M., Rahman, S., Madden, S., Parameswaran, A.G., Polyzotis, N.: SeeDB: efficient data-driven visualization recommendations to support visual analytics. PVLDB 8(13), 2182–2193 (2015)

    Google Scholar 

  24. 24.

    Ding, B., Huang, S., Chaudhuri, S., Chakrabarti, K., Wang, C.: Sample + seek: approximating aggregates with distribution precision guarantee. In: SIGMOD, pp. 679–694 (2016)

  25. 25.

    Moritz, D., Fisher, D., Ding, B., Wang, C.: Trust, but verify: optimistic visualizations of approximate queries for exploring big data. In: CHI, pp. 2904–2915 (2017)

  26. 26.

    Kim, A., Blais, E., Parameswaran, A.G., Indyk, P., Madden, S., Rubinfeld, R.: Rapid sampling for visualizations with ordering guarantees. PVLDB 8(5), 521–532 (2015)

    Google Scholar 

  27. 27.

    Fisher, D., Popov, I., Drucker, S., Schraefel, M.: Trust me, i’m partially right: incremental visualization lets analysts explore large datasets faster. In: CHI, pp. 1673–1682 (2012)

  28. 28.

    Rahman, S., Aliakbarpour, M., Kong, H.K., Blais, E., Karahalios, K., Parameswaran, A., Rubinfield, R., Rahman, S., Aliakbarpour, M., Kong, H.K.: I’ve seen “enough”: incrementally improving visualizations to support rapid decision making. PVLDB 10(11), 1262–1273 (2017)

    Google Scholar 

  29. 29.

    Wesley, R.M.G., Eldridge, M., Terlecki, P.: An analytic data engine for visualization in tableau. In: SIGMOD, pp. 1185–1194 (2011)

  30. 30.

    Wang, Z., Ferreira, N., Wei, Y., Bhaskar, A.S., Scheidegger, C.: Gaussian cubes: real-time modeling for visual exploration of large multidimensional datasets. TVCG 23(1), 681–690 (2016)

    Google Scholar 

  31. 31.

    Liu, Z., Jiang, B., Heer, J.: imMens: real-time visual querying of big data. In: Eurographics Conference on Visualization, pp. 421–430 (2013)

    Google Scholar 

  32. 32.

    Luo, Y., Qin, X., Tang, N., Li, G., Wang, X.: DeepEye: creating good data visualizations by keyword search. In: SIGMOD, pp. 1733–1736 (2018)

  33. 33.

    Wu, E., Psallidas, F., Miao, Z., Zhang, H., Rettig, L.: Combining design and performance in a data visualization management system. In: CIDR (2017)

  34. 34.

    Doshi, P.R., Rundensteiner, E.A., Ward, M.O.: Prefetching for visual data exploration. In: DASFAA, pp. 195–202 (2003)

  35. 35.

    Moritz, D., Wang, C., Nelson, G.L., Lin, H., Smith, A.M., Howe, B., Heer, J.: Formalizing visualization design knowledge as constraints: actionable and extensible models in draco. TVCG 25(1), 438–448 (2019)

    Google Scholar 

  36. 36.

    Siddiqui, T., Kim, A., Lee, J., Karahalios, K., Parameswaran, A.G.: Effortless data exploration with zenvisage: an expressive and interactive visual analytics system. PVLDB 10(4), 457–468 (2016)

    Google Scholar 

  37. 37.

    Qin, X., Luo, Y., Tang, N., Li, G.: DeepEye: visualizing your data by keyword search. In: EDBT Vision (2018)

  38. 38.

    Seo, J., Shneiderman, B.: A rank-by-feature framework for interactive exploration of multidimensional data. IV 4(2), 96–113 (2005)

    Google Scholar 

  39. 39.

    Mackinlay, J.D., Hanrahan, P., Stolte, C.: Show me: automatic presentation for visual analysis. TVCG 13(6), 1137–1144 (2007)

    Google Scholar 

  40. 40.

    Wang, Y., Han, F., Zhu, L., Deussen, O., Chen, B.: Line graph or scatter plot? Automatic selection of methods for visualizing trends in time series. TVCG 24(2), 1141–1154 (2018)

    Google Scholar 

  41. 41.

    Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J.D., Howe, B., Heer, J.: Voyager: exploratory analysis via faceted browsing of visualization recommendations. TVCG 22(1), 649–658 (2016)

    Google Scholar 

  42. 42.

    Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: interactive visual specification of data transformation scripts. In: CHI, pp. 3363–3372 (2011)

  43. 43.

    Von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.J., Fekete, J.-D., Fellner, D.W.: Visual analysis of large graphs: state-of-the-art and future research challenges. Comput. Graph. Forum 30, 1719–1749 (2011)

    Google Scholar 

  44. 44.

    Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: a survey. TVCG 6(1), 24–43 (2000)

    Google Scholar 

  45. 45.

    Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic graph visualization. Comput. Graph. Forum 36(1), 133–159 (2017)

    Google Scholar 

  46. 46.

    Bikakis, N., Sellis, T.: Exploration and visualization in the web of big linked data: a survey of the state of the art. arXiv preprint arXiv:1601.08059 (2016)

  47. 47.

    Marie, N., Gandon, F.: Survey of linked data based exploration systems. In: IESD (2014)

  48. 48.

    Dadzie, A.-S., Pietriga, E.: Visualisation of linked data-reprise. Semant. Web 8(1), 1–21 (2017)

    Google Scholar 

  49. 49.

    Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualization methods’a survey. ACM Comput. Surv. (CSUR) 39(4), 10 (2007)

    Google Scholar 

  50. 50.

    Liu, S., Maljovec, D., Wang, B., Bremer, P.-T., Pascucci, V.: Visualizing high-dimensional data: advances in the past decade. TVCG 3, 1249–1268 (2017)

    Google Scholar 

  51. 51.

    Wohlfart, E., Aigner, W., Bertone, A., Miksch, S.: Comparing information visualization tools focusing on the temporal dimensions. In: IV, pp. 69–74 (2008)

  52. 52.

    Mei, H., Ma, Y., Wei, Y., Chen, W.: The design space of construction tools for information visualization: A survey. J. Vis. Lang. Comput. 44, 120–132 (2018)

    Google Scholar 

  53. 53.

    Diamond, M., Mattia, A.: Data visualization: an exploratory study into the software tools used by businesses. J. Instr. Pedag. 17, 1–7 (2017)

    Google Scholar 

  54. 54.

    Ghosh, A., Nashaat, M., Miller, J., Quader, S., Marston, C.: A comprehensive review of tools for exploratory analysis of tabular industrial datasets. Vis. Inform. 2(4), 235–253 (2018)

    Google Scholar 

  55. 55.

    Keim, D.A., Lee, J.P., Thuraisinghaman, B., Wittenbrink, C.: Database issues for data visualization: supporting interactive database exploration. In: Workshop on Database Issues for Data Visualization, pp. 12–25 (1995)

    Google Scholar 

  56. 56.

    Idreos, S., Papaemmanouil, O., Chaudhuri, S.: Overview of data exploration techniques. In: SIGMOD, pp. 277–281 (2015)

  57. 57.

    Bikakis, N.: Big data visualization tools. arXiv:1801.08336 (2018)

    Google Scholar 

  58. 58.

    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. TKDE 6, 734–749 (2005)

    Google Scholar 

  59. 59.

    Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapted Interact. 12(4), 331–370 (2002)

    MATH  Google Scholar 

  60. 60.

    Sharma, L., Gera, A.: A survey of recommendation system: research challenges. IJETT 4(5), 1989–1992 (2013)

    Google Scholar 

  61. 61.

    Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl. Based Syst. 46, 109–132 (2013)

    Google Scholar 

  62. 62.

    Christi, J.R., Premkumar, K.: Survey on recommendation and visualization techniques for QoS-aware web services. In: ICICES, pp. 1–6 (2014)

  63. 63.

    Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Personalized recommendation of social software items based on social relations. In: RecSys, pp. 53–60 (2009)

  64. 64.

    Wei, K., Huang, J., Fu, S.: A survey of e-commerce recommender systems. In: ICSSSM, pp. 1–5 (2007)

  65. 65.

    Heer, J., Card, S.K., Landay, J.A.: prefuse: a toolkit for interactive information visualization. In: CHI, pp. 421–430 (2005)

  66. 66.

    Flare. http://flare.prefuse.org. Accessed 31 Dec 2018

  67. 67.

    Bostock, M., Heer, J.: Protovis: a graphical toolkit for visualization. TVCG 15(6), 1121–8 (2009)

    Google Scholar 

  68. 68.

    Satyanarayan, A., Russell, R., Hoffswell, J., Heer, J.: Reactive vega: a streaming dataflow architecture for declarative interactive visualization. TVCG 22(1), 659–668 (2015)

    Google Scholar 

  69. 69.

    Khan, M., Khan, S.S.: Data and information visualization methods, and interactive mechanisms: a survey. Int. J. Comput. Appl. 34(1), 1–14 (2011)

    Google Scholar 

  70. 70.

    Wilkinson, L.: The Grammar of Graphics. Springer, Berlin (2005)

    Google Scholar 

  71. 71.

    Wickham, H.: A layered grammar of graphics. J. Comput. Graph. Stat. 19(1), 3–28 (2010)

    MathSciNet  Google Scholar 

  72. 72.

    VanderPlas, J., Granger, B.E., Heer, J., Moritz, D., Wongsuphasawat, K., Satyanarayan, A., Lees, E., Timofeev, I., Welsh, B., Sievert, S.: Altair: interactive statistical visualizations for python. https://altair-viz.github.io. Accessed 31 Dec 2018

    Google Scholar 

  73. 73.

    Echarts. http://echarts.baidu.com. Accessed 31 Dec 2018

  74. 74.

    Shneiderman, B.: Direct manipulation: a step beyond programming languages. IEEE Comput. 16(8), 57–69 (1983)

    Google Scholar 

  75. 75.

    Qlik: Data analytics for modern business intelligence. https://www.qlik.com/us. Accessed 31 Dec 2018

  76. 76.

    Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R., Shen, W., Goldberg-Kidon, J.: Google fusion tables: web-centered data management and collaboration. In: SIGMOD, pp. 1061–1066 (2010)

  77. 77.

    Ren, D., Höllerer, T., Yuan, X.: iVisDesigner: expressive interactive design of information visualizations. TVCG 20(12), 2092–2101 (2014)

    Google Scholar 

  78. 78.

    Satyanarayan, A., Heer, J.: Lyra: An interactive visualization design environment. https://idl.cs.washington.edu/projects/lyra/. Accessed 31 Dec 2018

  79. 79.

    Yalçın, M.A., Elmqvist, N., Bederson, B.B.: Keshif: Rapid and expressive tabular data exploration for novices. TVCG 24(8), 2339–2352 (2018)

    Google Scholar 

  80. 80.

    Liu, Z., Thompson, J., Wilson, A., Dontcheva, M., Delorey, J., Grigg, S., Kerr, B., Stasko, J.: Data illustrator. http://www.zcliu.org/di/. Accessed 31 Dec 2018

  81. 81.

    Liu, Z., Thompson, J., Wilson, A., Dontcheva, M., Delorey, J., Grigg, S., Kerr, B., Stasko, J.T.: Data illustrator: Augmenting vector design tools with lazy data binding for expressive visualization authoring. In: CHI, p. 123 (2018)

  82. 82.

    Warren, L.: The visual display of quantitative information. Yale J. Biol. Med. 44(4), 400–400 (1986)

    Google Scholar 

  83. 83.

    Wongsuphasawat, K., Qu, Z., Moritz, D., Chang, R., Ouk, F., Anand, A., Mackinlay, J.D., Howe, B., Heer, J.: Voyager 2: augmenting visual analysis with partial view specifications. In: CHI, pp. 2648–2659 (2017)

  84. 84.

    Key, A., Howe, B., Perry, D., Aragon, C.R.: Vizdeck: self-organizing dashboards for visual analytics. In: SIGMOD, pp. 681–684 (2012)

  85. 85.

    Kandel, S., Parikh, R., Paepcke, A., Hellerstein, J.M., Heer, J.: Profiler: integrated statistical analysis and visualization for data quality assessment. In: AVI, pp. 547–554 (2012)

  86. 86.

    Elzen, S.V.D., van Wijk, J.J.: Small multiples, large singles: a new approach for visual data exploration. Comput. Graph. Forum 32(3pt2), 191–200 (2013)

    Google Scholar 

  87. 87.

    Wilkinson, L., Anand, A., Grossman, R.: Graph-theoretic scagnostics. In: IEEE Symposium on Information Visualization, 2005. IEEE, Minneapolis, MN, USA (2005)

  88. 88.

    Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. 5(2), 110–141 (1986)

    Google Scholar 

  89. 89.

    Setlur, V., Battersby, S.E., Tory, M., Gossweiler, R., Chang, A.X.: Eviza: A natural language interface for visual analysis. In: UIST, pp. 365–377 (2016)

  90. 90.

    Hoque, E., Setlur, V., Tory, M., Dykeman, I.: Applying pragmatics principles for interaction with visual analytics. TVCG 24(1), 309–318 (2017)

    Google Scholar 

  91. 91.

    Wu, E., Battle, L., Madden, S.R.: The case for data visualization management systems: vision paper. PVLDB 7(10), 903–906 (2014)

    Google Scholar 

  92. 92.

    Wu, E., Psallidas, F., Miao, Z., Zhang, H., Rettig, L., Wu, Y., Sellam, T.: Combining design and performance in a data visualization management system. In: CIDR (2017)

  93. 93.

    Lins, L., Klosowski, J.T., Scheidegger, C.: Nanocubes for real-time exploration of spatiotemporal datasets. TVCG 19(12), 2456–2465 (2013)

    Google Scholar 

  94. 94.

    Pang, Z., Wu, S., Chen, G., Chen, K., Shou, L.: FlashView: an interactive visual explorer for raw data. PVLDB 10(12), 1869–1872 (2017)

    Google Scholar 

  95. 95.

    Zoumpatianos, K., Idreos, S., Palpanas, T.: Indexing for interactive exploration of big data series. In: SIGMOD, pp. 1555–1566 (2014)

  96. 96.

    Piringer, H., Tominski, C., Muigg, P., Berger, W.: A multi-threading architecture to support interactive visual exploration. TVCG 15(6), 1113–1120 (2009)

    Google Scholar 

  97. 97.

    Chan, S.-M., Xiao, L., Gerth, J., Hanrahan. P.: Maintaining interactivity while exploring massive time series. In: VAST, pp. 59–66 (2008)

  98. 98.

    Battle, L., Chang, R., Stonebraker, M.: Dynamic prefetching of data tiles for interactive visualization. In: SIGMOD, pp. 1363–1375 (2016)

  99. 99.

    Alabi, D., Wu, E.: PFunk-H: approximate query processing using perceptual models. In: HILDA@SIGMOD, pp. 10–16 (2016)

  100. 100.

    Bikakis, N., Papastefanatos, G., Skourla, M., Sellis, T.: A hierarchical aggregation framework for efficient multilevel visual exploration and analysis. Semant. Web 8(1), 139–179 (2017)

    Google Scholar 

  101. 101.

    Elmqvist, N., Fekete, J.D.: Hierarchical aggregation for information visualization: overview, techniques, and design guidelines. TVCG 16(3), 439–454 (2010)

    Google Scholar 

  102. 102.

    Pahins, C.A., Stephens, S.A., Scheidegger, C., Comba, J.L.: Hashedcubes: simple, low memory, real-time visual exploration of big data. TVCG 23(1), 671–680 (2016)

    Google Scholar 

  103. 103.

    Moritz, D., Howe, B., Heer, J.: Falcon: balancing interactive latency and resolution sensitivity for scalable linked visualizations. In: CHI, p. 694 (2019)

  104. 104.

    Tauheed, F., Heinis, T., Shrmann, F., Markram, H., Ailamaki, A.: SCOUT: prefetching for latent feature following queries. PVLDB 5(11), 1531–1542 (2012)

    Google Scholar 

  105. 105.

    Yesilmurat, S.: Retrospective adaptive prefetching for interactive web gis applications. Geoinformatica 16(3), 435–466 (2012)

    Google Scholar 

  106. 106.

    Dong, H.L., Kim, J.S., Kim, S.D., Kim, K.C., Yoosung, K., Park, J.: Adaptation of a neighbor selection markov chain for prefetching tiled web GIS data. In: ADVIS, pp. 213–222 (2002)

  107. 107.

    Fua, Y.H., Ward, M.O., Rundensteiner, E.A.: Structure-based brushes: a mechanism for navigating hierarchically organized data and information spaces. TVCG 6(2), 150–159 (2000)

    Google Scholar 

  108. 108.

    Tao, W., Liu, X., Demiralp, Ç., Chang, R., Stonebraker, M.: Kyrix: Interactive visual data exploration at scale. In: CIDR (2019)

  109. 109.

    Broy, M., Denert, E., Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes. In: Broy, M., Denert, E. (eds.) Software Pioneers. Springer, Berlin, Heidelberg (2002)

    Google Scholar 

  110. 110.

    Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J.D., Howe, B., Heer, J.: Towards a general-purpose query language for visualization recommendation. In: HILDA@SIGMOD, pp. 4–9 (2016)

  111. 111.

    Roth, S.F., Kolojejchick, J., Mattis, J., Goldstein, J.: Interactive graphic design using automatic presentation knowledge. In: CHI, p. 207 (1994)

  112. 112.

    Casner, S.M.: Task-analytic approach to the automated design of graphic presentations. ACM Trans. Graph. 10(2), 111–151 (1991)

    Google Scholar 

  113. 113.

    Bertin, J.: Semiology of graphics - diagrams, networks, maps. ESRI. ISBN: 978-1-58948-261-6. http://esripress.esri.com/display/index.cfm?fuseaction=display&websiteID=190&moduleID=0 (2010)

  114. 114.

    Cleveland, W.S., McGill, R.: Graphical perception: theory, experimentation, and application to the development of graphical methods. ASA 79(387), 531–554 (1984)

    Google Scholar 

  115. 115.

    Shepard, R.N.: Toward a universal law of generalization for psychological science. Science 242(4880), 1317–1323 (1988)

    MathSciNet  MATH  Google Scholar 

  116. 116.

    Lewandowsky, Stephan, Spence, Ian: Discriminating strata in scatterplots. ASA 84(407), 682–688 (1989)

    Google Scholar 

  117. 117.

    Hu, K.Z., Orghian, D., Hidalgo, C.A.: DIVE: a mixed-initiative system supporting integrated data exploration workflows. In: HILDA@SIGMOD, pp. 5:1–5:7 (2018)

  118. 118.

    Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. ASA 74(368), 829–836 (1979)

    MathSciNet  MATH  Google Scholar 

  119. 119.

    Silverman, B.W.: Density estimation for statistics and data analysis. Springer, pp. 1–158 (1986). https://doi.org/10.1007/978-1-4899-3324-9

    Google Scholar 

  120. 120.

    Dibia, V., Demiralp, Ç.: Data2Vis: Automatic generation of data visualizations using sequence to sequence recurrent neural networks. CoRR, abs/1804.03126 (2018)

  121. 121.

    Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 89–96 (2005)

  122. 122.

    Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal regression. In: ICANN, vol. 1, pp. 97–102 (2002)

  123. 123.

    Kim, Y., Heer, J.: Assessing effects of task and data distribution on the effectiveness of visual encodings. Comput. Graph. Forum 37(3), 157–167 (2018)

    Google Scholar 

  124. 124.

    Saket, B., Endert, A., Demiralp, C.: Task-based effectiveness of basic visualizations. TVCG PP(99), 1–1 (2017)

    Google Scholar 

  125. 125.

    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  126. 126.

    Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Ranking, boosting, and model adaptation. Technical report, Microsoft Research (2008)

  127. 127.

    Epelbaum, T.: Deep learning: technical introduction. CoRR, arXiv:1709.01412 (2017)

  128. 128.

    Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. NIPS 4, 3104–3112 (2014)

    Google Scholar 

  129. 129.

    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. Comput. Sci. arXiv preprint arXiv:1409.0473 (2014)

  130. 130.

    Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling. In: Interspeech, pp. 601–608 (2012)

  131. 131.

    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  132. 132.

    Poco, J., Heer, J.: Reverse-engineering visualizations: recovering visual encodings from chart images. Comput Graph Forum 36(3), 353–363

    Google Scholar 

  133. 133.

    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 159–165 (1990)

    MATH  Google Scholar 

  134. 134.

    Gotz, D., Wen, Z.: Behavior-driven visualization recommendation. In: IUI, pp. 315–324 (2009)

  135. 135.

    Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: World Automation Congress, pp. 158–166 (1999)

  136. 136.

    Liu, R.R., Jia, C.X., Zhou, T., Sun, D., Wang, B.H.: Personal recommendation via modified collaborative filtering. Physica A Stat. Mech. Appl. 388(4), 462–468 (2012)

    Google Scholar 

  137. 137.

    Soboroff, I., Nicholas, C.: Combining content and collaboration in text filtering. In: IJCAI, pp. 86–91 (1999)

  138. 138.

    Mutlu, B., Veas, E., Trattner, C.: VizRec: recommending personalized visualizations. TIIS 6(4), 31 (2016)

    Google Scholar 

  139. 139.

    Wu, E., Madden, S.R.: Scorpion: explaining away outliers in aggregate queries. In: PVLDB, pp. 553–564 (2013)

    Google Scholar 

  140. 140.

    Song, H., Szafir, D.A.: Where’s my data? Evaluating visualizations with missing data. IEEE Trans. Vis. Comput. Graph. 25(1), 914–924 (2019)

    Google Scholar 

  141. 141.

    Battle, L., Angelini, M., Binnig, C., Catarci, T., Eichmann, P., Fekete, J., Santucci, G., Sedlmair, M., Willett, W.: Evaluating visual data analysis systems: a discussion report. In: HILDA@SIGMOD, pp. 4:1–4:6 (2018)

  142. 142.

    Battle, L., Chang, R., Heer, J., Stonebraker, M.: Position statement: the case for a visualization performance benchmark. In: DSIA, pp. 1–5 (2017)

  143. 143.

    Jiang, L., Rahman, P., Nandi, A.: Evaluating interactive data systems: workloads, metrics, and guidelines. In: SIGMOD, pp. 1637–1644 (2018)

  144. 144.

    Hu, K.Z., Gaikwad, S.N.S., Hulsebos, M., Bakker, M.A., Zgraggen, E., Hidalgo, C.A., Kraska, T., Li, G., Satyanarayan, A., Demiralp, Ç.: Viznet: Towards A large-scale visualization learning and benchmarking repository. In: CHI, pp. 662 (2019)

  145. 145.

    Valizadegan, H., Jin, R., Zhang, R., Mao, J.: Learning to rank by optimizing NDCG measure. In: NIPS, pp. 1883–1891 (2009)

  146. 146.

    Rezig, E.K., Cao, L., Stonebraker, M., Simonini, G., Tao, W., Madden, S., Ouzzani, M., Tang, N., Elmagarmid, A.K.: Data civilizer 2.0: a holistic framework for data preparation and analytics. PVLDB 12(12), 1954–1957 (2019)

    Google Scholar 

  147. 147.

    Rezig, E.K., Cao, L., Simonini, G., Schoemans, M., Madden, S., Ouzzani, M., Tang, N., Stonebraker, M.: Dagger: a data (not code) debugger. In: CIDR (2020)

Download references

Acknowledgements

Funding was provided by 973 Program of China (Grant No. 2015CB358700) and National Natural Science Foundation of China (Grant Nos. 61632016, 61521002, 61661166012).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guoliang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Luo, Y., Tang, N. et al. Making data visualization more efficient and effective: a survey. The VLDB Journal 29, 93–117 (2020). https://doi.org/10.1007/s00778-019-00588-3

Download citation

Keywords

  • Data visualization
  • Visualization languages
  • Efficient data visualization
  • Data visualization recommendation