Efficient processing of moving collective spatial keyword queries

Abstract

As a major type of continuous spatial queries, the moving spatial keyword queries have been studied extensively. Most existing studies focus on retrieving single objects, each of which is close to the query object and relevant to the query keywords. Nevertheless, a single object may not satisfy all the needs of a user, e.g., a user who is driving may want to withdraw money, wash her car, and buy some medicine, which could only be satisfied by multiple objects. We thereby formulate a new type of queries named the moving collective spatial keyword query (MCSKQ). This type of queries continuously reports a set of objects that collectively cover the query keywords as the query moves. Meanwhile, the returned objects must also be close to the query object and close to each other. Computing the exact result set is an NP-hard problem. To reduce the query processing costs, we propose algorithms, based on safe region techniques, to maintain the exact result set while the query object is moving. We further propose two approximate algorithms to obtain even higher query efficiency with precision bounds. All the proposed algorithms are also applicable to MCSKQ with weighted objects and MCSKQ in the domain of road networks. We verify the effectiveness and efficiency of the proposed algorithms both theoretically and empirically, and the results confirm the superiority of the proposed algorithms over the baseline algorithms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Notes

  1. 1.

    https://www.zelda.com/.

  2. 2.

    https://elderscrolls.bethesda.net/.

  3. 3.

    Given a query q and two objects, \(o_i\) and \(o_j\), the dominant region of \(o_i\) to \(o_j\) is a region such that if q is in the region, \(o_i\) is a better answer than \(o_j\).

  4. 4.

    http://www.cs.utah.edu/~lifeifei/.

  5. 5.

    http://www.chorochronos.org/.

References

  1. 1.

    Guo, L., Shao, J., Aung, H., Tan, K.: Efficient continuous top-\(k\) spatial keyword queries on road networks. Geoinformatica 19(1), 29–60 (2015)

    Article  Google Scholar 

  2. 2.

    Huang, W., Li, G., Tan, K., Feng, J.: Efficient safe-region construction for moving top-\(k\) spatial keyword queries. In: CIKM, pp. 932–941 (2012)

  3. 3.

    Qi, J., Zhang, R., Jensen, C., Ramamohanarao, K., He, J.: Continuous spatial query processing: a survey of safe region based techniques. ACM Comput. Surv. 51(3), 1–39 (2018)

    Article  Google Scholar 

  4. 4.

    Wu, D., Yiu, M., Jensen, C., Cong, G.: Efficient continuously moving top-\(k\) spatial keyword query processing. In: ICDE, pp. 541–552 (2011)

  5. 5.

    Cao, X., Cong, G., Guo, T., Jensen, C., Ooi, B.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384 (2011)

  6. 6.

    Chan, H., Long, C., Wong, R.: On generalizing collective spatial keyword queries. IEEE Trans. Knowl. Data Eng. 30(9), 1712–1726 (2018)

    Article  Google Scholar 

  7. 7.

    Long, C., Wong, C., Wang, K., Fu, W.: Collective spatial keyword queries: a distance owner-driven approach. In: SIGMOD, pp. 689–700 (2013)

  8. 8.

    Su, S., Zhao, S., Cheng, X., Bi, R., Cao, X., Wang, J.: Group-based collective keyword querying in road networks. Inf. Process. Lett. 118, 83–90 (2017)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: Analysis and evaluation of V*-\(k\)NN: an efficient algorithm for moving \(k\)NN queries. VLDBJ 19(3), 307–332 (2010)

    Article  Google Scholar 

  10. 10.

    Wang, Y., Zhang, R., Xu, C., Qi, J., Gu, Y., Yu, G.: Continuous visible \(k\) nearest neighbor query on moving objects. Inf. Syst. 44, 1–21 (2014)

    Article  Google Scholar 

  11. 11.

    Ward, P., He, Z., Zhang, R., Qi, J.: Real-time continuous intersection joins over large sets of moving objects using graphic processing units. VLDBJ 23(6), 965–985 (2014)

    Article  Google Scholar 

  12. 12.

    Cao, X., Cong, G., Guo, T., Jensen, C., Ooi, B.: Efficient processing of spatial group keyword queries. ACM TODS 40(2), 1–48 (2015)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Chan, H., Long, C., Wong, R.: Inherent-cost aware collective spatial keyword queries. In: SSTD, pp. 357–375 (2017)

  14. 14.

    Gao, Y., Zhao, J., Zheng, B., Chen, G.: Efficient collective spatial keyword query processing on road networks. IEEE Trans. Intell. Transp. Syst. 17(2), 469–480 (2016)

    Article  Google Scholar 

  15. 15.

    Jin, X., Shin, S., Jo, E., Lee, K.: Collective keyword query on a spatial knowledge base. IEEE Trans. Knowl. Data Eng. 31(11), 2051–2062 (2019)

    Article  Google Scholar 

  16. 16.

    Zhao, S., Cheng, X., Su, S., Shuang, K.: Popularity-aware collective keyword queries in road networks. Geoinform. 21(3), 485–518 (2017)

    Article  Google Scholar 

  17. 17.

    Zhang, P., Lin, H., Yao, B., Lu, D.: Level-aware collective spatial keyword queries. Inf. Sci. 378, 194–214 (2017)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Shekhar, S., Liu, D.: Ccam: a connectivity-clustered access method for networks and network computations. IEEE Trans. Knowl. Data Eng. 9(1), 102–119 (1993)

    Article  Google Scholar 

  19. 19.

    Gu, Y., Liu, G., Qi, J., Xu, H., Yu, G., Zhang, R.: The moving \(k\) diversified nearest neighbor query. IEEE Trans. Knowl. Data Eng. 28(10), 2778–2792 (2016)

    Article  Google Scholar 

  20. 20.

    Li, C., Gu, Y., Qi, J., Yu, G., Zhang, R., Yi, W.: Processing moving \(k\)nn queries using influential neighbor sets. PVLDB 8(2), 113–124 (2014)

    Google Scholar 

  21. 21.

    Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB, pp. 287–298 (2002)

  22. 22.

    Attique, M., Cho, H., Jin, R., Chung, T.: Efficient processing of continuous reverse \(k\) nearest neighbor on moving objects in road networks. Geo-Inf 5(12), 247 (2016)

    Google Scholar 

  23. 23.

    Cheema, M., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse \(k\) nearest neighbors queries in Euclidean space and in spatial networks. VLDBJ 21(1), 69–95 (2012)

    Article  Google Scholar 

  24. 24.

    Cheema, M., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Multi-guarded safe zone: An effective technique to monitor moving circular range queries. In: ICDE, pp. 189–200 (2010)

  25. 25.

    Cho, H., Ryu, K., Chung, T.: An efficient algorithm for computing safe exit points of moving range queries in directed road networks. Inf. Syst. 41, 1–19 (2014)

    Article  Google Scholar 

  26. 26.

    Huang, J., Huang, C.: A proxy-based approach to continuous location-based spatial queries in mobile environments. IEEE Trans. Knowl. Data Eng. 25(2), 260–273 (2013)

    Article  Google Scholar 

  27. 27.

    Mahmood, A., Daghistani, A., Aly, A., Tang, M., Basalamah S., Prabhakar,S., Aref, W.: Adaptive processing of spatial-keyword data over a distributed streaming cluster. In: SIGSPATIAL, pp. 219–228 (2018)

  28. 28.

    Chen, B., Lv, Z., Yu, X., Liu, Y.: Sliding window top-\(k\) monitoring over distributed data streams. Data Sci. Eng. 2(4), 289–300 (2017)

    Article  Google Scholar 

  29. 29.

    Wang, X., Zhang, Y., Zhang, W., Lin, X., Wang, W.: AP-tree: efficiently support location-aware publish/subscribe. VLDBJ 24(6), 823–848 (2015)

    Article  Google Scholar 

  30. 30.

    Salgado, C., Cheema, M., Ali, M.: Continuous monitoring of range spatial keyword query over moving objects. World Wide Web 21(3), 687–712 (2018)

    Article  Google Scholar 

  31. 31.

    Guo, L., Zhang, D., Li, G., Tan, K., Bao, Z.: Location-aware pub/sub system: when continuous moving queries meet dynamic event streams. In: SIGMOD, pp. 843–857 (2015)

  32. 32.

    Zheng, B., Zheng, K., Xiao, X., Su, H., Yin, H., Zhou, X., Li, G.: Keyword-aware continuous \(k\)NN query on road networks. In: ICDE, pp. 871–882 (2016)

  33. 33.

    Okabe, A., Boots, B., Sugihara, K., Chiu, S.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, London (2001)

    Google Scholar 

  34. 34.

    Liu, C., Papadopoulou, E., Lee, D.: An output-sensitive approach for the L1/L\({\infty }\) \(k\)-nearest-neighbor voronoi diagram. Algorithms ESA 1, 70–81 (2011)

    MATH  Google Scholar 

  35. 35.

    Mu, L.: Polygon characterization with the multiplicatively weighted voronoi diagram. Prof. Geogr. 56(2), 223–239 (2004)

    Google Scholar 

  36. 36.

    Kolahdouzan, M., Shahabi, C.: Voronoi-based \(k\) nearest neighbor search for spatial network databases. In: VLDB, pp. 840–851 (2004)

  37. 37.

    Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB, pp. 802–813 (2003)

  38. 38.

    Chen, L., Cong, G., Cao, X., Tan, K.: Temporal spatial-keyword top-\(k\) publish/subscribe.In: ICDE, pp. 255–266 (2015)

  39. 39.

    Bao, J., Zheng, Y., Mokbel, M.: Location-based and preference-aware recommendation using sparse geo-social networking data. In: SIGSPATIAL, pp. 199–208 (2012)

  40. 40.

    Cong, G., Jensen, C., Wu, D.: Efficient retrieval of the top-\(k\) most relevant spatial web objects. VLDB Endow. 2(1), 337–348 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (2018YFB1003404), the National Natural Science Foundation of China (61872070, U1811261), the Fundamental Research Funds for the Central Universities (N171605001) and Liao Ning Revitalization Talents Program (XLYC1807158).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Gu, Y., Sun, Y. et al. Efficient processing of moving collective spatial keyword queries. The VLDB Journal 29, 841–865 (2020). https://doi.org/10.1007/s00778-019-00583-8

Download citation

Keywords

  • Moving query
  • Collective spatial keyword query
  • Safe region
  • Query processing algorithms