Skip to main content

Enhancing online video recommendation using social user interactions


The creation of media sharing communities has resulted in the astonishing increase of digital videos, and their wide applications in the domains like online news broadcasting, entertainment and advertisement. The improvement of these applications relies on effective solutions for social user access to videos. This fact has driven the research interest in the recommendation in shared communities. Though effort has been put into social video recommendation, the contextual information on social users has not been well exploited for effective recommendation. Motivated by this, in this paper, we propose a novel approach based on the video content and user information for the recommendation in shared communities. A new solution is developed by allowing batch video recommendation to multiple new users and optimizing the subcommunity extraction. We first propose an effective technique that reduces the subgraph partition cost based on graph decomposition and reconstruction for efficient subcommunity extraction. Then, we design a summarization-based algorithm which groups the clicked videos of multiple unregistered users and simultaneously provide recommendation to each of them. Finally, we present a nontrivial social updates maintenance approach for social data based on user connection summarization. We evaluate the performance of our solution over a large dataset considering different strategies for group video recommendation in sharing communities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14



  2. Mayer, J., Mitchell, J.: Third-party web tracking: policy and technology. In: Security and Privacy (SP), 2012 IEEE Symposium on, pp. 413–427 (2012)


  4. Yang, B., Mei, T., Hua, X.-S., Yang, L., Yang, S.-Q., Li, M.: Online video recommendation based on multimodal fusion and relevance feedback. In: CIVR, pp. 73–80 (2007)

  5. Zhou, X., Chen, L., Zhang, Y., Cao, L., Huang, G., Wang, C.: Online video recommendation in sharing community. In: SIGMOD, pp. 1645–1656 (2015)

  6. Roy, S.B., Lakshmanan, L.V.S., Liu, R.: From group recommendations to group formation. In: SIGMOD, pp. 1603–1616 (2015)

  7. Van Setten, M., Veenstra, M., Nijholt, A., van Dijk, B.: Prediction strategies in a tv recommender system—method and experiments. In: ICWI, pp. 203–210 (2003)

  8. Christakou, C., Stafylopatis, A.: A hybrid movie recommender system based on neural networks. In: ISDA, pp. 500–505 (2005)

  9. Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., Aly, M.: Video suggestion and discovery for youtube: taking random walks through the view graph. In: WWW, pp. 895–904 (2008)

  10. Luo, H., Fan, J., Keim, D.A.: Personalized news video recommendation. In: ACM Multimedia, pp. 1001–1002 (2008)

  11. Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B.: SCENE: a scalable two-stage personalized news recommendation system. In: SIGIR, pp. 125–134 (2011)

  12. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: WWW, pp. 661–670 (2010)

  13. Sedhain, S., Sanner, S., Xie, L., Kidd, R., Tran, K., Christen, P.: Social affinity filtering: recommendation through fine-grained analysis of user interactions and activities. In: Conference on Online Social Networks, pp. 51–62 (2013)

  14. Hopfgartner, F.: Adaptive interactive news video recommendation: an example system. In: SEMAIS, pp. 21–25 (2011)

  15. Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston, B., Sampath, D.: The youtube video recommendation system. In: RecSys, pp. 293–296 (2010)

  16. Zhu, Q., Shyu, M.-L., Wang, H.: Videotopic: content-based video recommendation using a topic model. In: ISM, pp. 219–222 (2013)

  17. Zhao, X., Yuan, J., Hong, R., Wang, M., Li, Z., Chua, T.-S.: On video recommendation over social network. In: Advances in Multimedia Modeling. Lecture Notes in Computer Science, vol. 7131, pp. 149–160. Springer, Berlin (2012)

  18. Huang, Y., Cui, B., Jiang, J., Hong, K., Zhang, W., Xie, Y.: Real-time video recommendation exploration. In: SIGMOD, pp. 35–46 (2016)

  19. Cui, L., Dong, L., Fu, X., Wen, Z., Lu, N., Zhang, G.: A video recommendation algorithm based on the combination of video content and social network. Concur. Comput. Pract. Exp (2016). doi:10.1002/cpe.3900

  20. Zhao, X., Yuan, J., Wang, M., Li, G., Hong, R., Li, Z., Chua, T.-S.: Video recommendation over multiple information sources. Multimed. Syst. 19(1), 3–15 (2013)

    Article  Google Scholar 

  21. Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., Schmidt-Thieme, L.: Learning attribute-to-feature mappings for cold-start recommendations. In: ICDM, pp. 176–185 (2010)

  22. Sedhain, S., Sanner, S., Braziunas, D., Xie, L., Christensen, J.: Social collaborative filtering for cold-start recommendations. In: RecSys, pp. 345–348 (2014)

  23. Cheung, S.-C.S., Zakhor, A.: Efficient video similarity measurement with video signature. IEEE Trans. Circuits Syst. Video Technol. 13(1), 59–74 (2003)

    Article  Google Scholar 

  24. Huang, Z., Shen, H.T., Shao, J., Cui, B., Zhou, X.: Practical online near-duplicate subsequence detection for continuous video streams. IEEE Trans. Multimed. 12(5), 386–398 (2010)

    Article  Google Scholar 

  25. Huang, Z., Shen, H.T., Shao, J., Zhou, X., Cui, B.: Bounded coordinate system indexing for real-time video clip search. ACM Trans. Inf. Syst. 27(3), 17:1–17:33 (2009)

    Article  Google Scholar 

  26. Shen, H.T., Ooi, B.C., Zhou, X.: Towards effective indexing for very large video sequence database. In: SIGMOD, pp. 730–741 (2005)

  27. Law-To, J., Buisson, O., Gouet-Brunet, V., Boujemaa, N.: Robust voting algorithm based on labels of behavior for video copy detection. In: ACM Multimedia, pp. 835–844 (2006)

  28. Song, J., Yang, Y., Huang, Z., Shen, H.T., Hong, R.: Multiple feature hashing for real-time large scale near-duplicate video retrieval. In: ACM Multimedia, pp. 423–432 (2011)

  29. Wu, X., Hauptmann, A.G., Ngo, C.-W.: Practical elimination of near-duplicates from web video search. In: ACM Multimedia, pp. 218–227 (2007)

  30. Zhou, X., Chen, L., Zhou, X.: Structure tensor series-based matching for near-duplicate video retrieval. In: ACM Multimedia, pp. 1057–1060 (2011)

  31. Kim, C., Vasudev, B.: Spatiotemporal sequence matching for efficient video copy detection. IEEE Trans. Circuits Syst. Video Technol. 15(1), 127–132 (2005)

    Article  Google Scholar 

  32. Shang, L., Yang, L., Wang, F., Chan, K.-P., Hua, X.-S.: Real-time large scale near-duplicate web video retrieval. In: ACM Multimedia, pp. 531–540 (2010)

  33. Yan, Y., Ooi, B.C., Zhou, A.: Continuous content-based copy detection over streaming videos. In: ICDE, pp. 853–862 (2008)

  34. Zhou, X., Chen, L.: Monitoring near duplicates over video streams. In: ACM Multimedia, pp. 521–530 (2010)

  35. Zobel, J., Hoad, T.C.: Detection of video sequences using compact signatures. ACM Trans. Inf. Syst. 24(1), 1–50 (2006)

    Article  Google Scholar 

  36. Liu, Z., Zavesky, E., Gibbon, D., Shahraray, B., Haffner, P.: At&t research at trecvid 2007. In: TRECVID (2007)

  37. Zhou, X., Zhou, X., Chen, L., Shu, Y., Bouguettaya, A., Taylor, J.A.: Adaptive subspace symbolization for content-based video detection. IEEE Trans. Knowl. Data Eng. 22(10), 1372–1387 (2010)

  38. Zhou, X., Zhou, X., Chen, L., Bouguettaya, A., Xiao, N., Taylor, J.A.: An efficient near-duplicate video shot detection method using shot-based interest points. IEEE Trans. Multimed. 11(5), 879–891 (2009)

    Article  Google Scholar 

  39. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)

  40. Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., Wu, Y.: Learning fine-grained image similarity with deep ranking. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’14, pp. 1386–1393 (2014)

  41. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimensional nearest neighbor search. In: SIGMOD, pp. 563–576 (2009)

  42. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    MathSciNet  Article  Google Scholar 

  43. Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA (2005)

    Google Scholar 

  44. Ramakrishna, M.V., Zobel, J.: Performance in practice of string hashing functions. In: DASFAA, pp. 215–224 (1997)

  45. Smith, J.R., Jaimes, A., Lin, C.-Y., Naphade, M.R., Natsev, A., Tseng, B.L.: Interactive search fusion methods for video database retrieval. In: ICIP vol. 1, pp. 741–744 (2003)



  48. Koren, Y.: Factorization meets the neighborhood: A multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08, pp. 426–434 (2008)

  49. Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR (2006)

  50. Chiu, C.-Y., Li, C.-H., Wang, H.-A., Chen, C.-S., Chien, L.-F.: A time warping based approach for video copy detection. In: Proceedings of the 18th International Conference on Pattern Recognition, ICPR ’06, vol. 03, pp. 228–231 (2006)

  51. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, August 31–September 3 2004, pp. 792–803 (2004)

  52. Broder, A.: On the resemblance and containment of documents. In: Proceedings of the Compression and Complexity of Sequences 1997, SEQUENCES ’97, pp. 21–29 (1997)

Download references


The research presented in this paper has been supported via ARC projects DP140100841, DP150103071 and DP130102691, NSFC project 61332013, the Hong Kong SRFDP&RGC ERG Joint Research Scheme MHKUST602/12, National Grand Fundamental Research 973 Program of China under Grant 2014CB340303, Microsoft Research Asia Gift Grant and Google Faculty Award 2013.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiangmin Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Chen, L., Zhang, Y. et al. Enhancing online video recommendation using social user interactions. The VLDB Journal 26, 637–656 (2017).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Online video recommendation
  • Social relevance
  • Group video summarization