The VLDB Journal

, Volume 26, Issue 3, pp 373–397 | Cite as

Finding lowest-cost paths in settings with safe and preferred zones

  • Saad Aljubayrin
  • Jianzhong Qi
  • Christian S. Jensen
  • Rui ZhangEmail author
  • Zhen He
  • Yuan Li
Regular Paper


We define and study Euclidean and spatial network variants of a new path finding problem: given a set of safe or preferred zones with zero or low cost, find paths that minimize the cost of travel from an origin to a destination. In this problem, the entire space is passable, with preference given to safe or preferred zones. Existing algorithms for problems that involve unsafe regions to be avoided strictly are not effective for this new problem. To solve the Euclidean variant, we devise a transformation of the continuous data space with safe zones into a discrete graph upon which shortest path algorithms apply. A naive transformation yields a large graph that is expensive to search. In contrast, our transformation exploits properties of hyperbolas in Euclidean space to safely eliminate graph edges, thus improving performance without affecting correctness. To solve the spatial network variant, we propose a different graph-to-graph transformation that identifies critical points that serve the same purpose as do the hyperbolas, thus also avoiding the extraneous edges. Having solved the problem for safe zones with zero costs, we extend the transformations to the weighted version of the problem, where travel in preferred zones has nonzero costs. Experiments on both real and synthetic data show that our approaches outperform baseline approaches by more than an order of magnitude in graph construction time, storage space, and query response time.


Path finding Safest path Safe zones Preferred zones Hyperbola 


  1. 1.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest paths in road networks. In: SEA, pp. 230–241 (2011)Google Scholar
  2. 2.
    Aljubayrin, S., Qi, J., Jensen, C.S., Zhang, R., He, Z., Wen, Z.: The safest path via safe zones. In: ICDE, pp. 531–542 (2015)Google Scholar
  3. 3.
    Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route planning in transportation networks. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering, vol. 9220, pp. 19–80. Springer (2016)Google Scholar
  4. 4.
    Berg, J., Overmars, M.: Planning the shortest safe path amidst unpredictably moving obstacles. In: Algorithmic Foundation of Robotics VII, pp. 103–118 (2008)Google Scholar
  5. 5.
    Bortoff, S.A.: Path planning for UAVs. In: American Control Conference, pp. 364–368 (2000)Google Scholar
  6. 6.
    Dehn, E.: Algebraic equations: an introduction to the theories of Lagrange and Galois. Courier Corporation (2012)Google Scholar
  7. 7.
    Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: Hardware-accelerated shortest path trees. J. Paral. Distrib. Comput. 73(7), 940–952 (2013)Google Scholar
  8. 8.
    Efentakis, A., Pfoser, D.: ReHub: Extending hub labels for reverse k-nearest neighbor queries on large-scale networks. J. Exp. Alg. 21(1), 1–13 (2016)Google Scholar
  9. 9.
    Eunus Ali, M., Zhang, R., Tanin, E., Kulik, L.: A motion-aware approach to continuous retrieval of 3d objects. In: ICDE, pp. 843–852 (2008)Google Scholar
  10. 10.
    Robert, W.F.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)Google Scholar
  11. 11.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: SEA, pp. 319–333 (2008)Google Scholar
  12. 12.
    Gray, A., Abbena, E., Salamon, S.: Modern differential geometry of curves and surfaces with mathematica. Chapman and Hall/CRC, London (2006)zbMATHGoogle Scholar
  13. 13.
    Hallam, C., Harrison, K.J., Ward, J.A.: A multiobjective optimal path algorithm. Dig. Signal Process. 11(2), 133–143 (2001)CrossRefGoogle Scholar
  14. 14.
    Helgason, R.V., Kennington, J.L., Lewis, K.H.: Shortest path algorithms on grid graphs with applications to strike planning. Technical report, DTIC Document (1997)Google Scholar
  15. 15.
    Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: iDistance: An adaptive B+-tree based indexing method for nearest neighbor search. TODS 30(2), 364–397 (2005)CrossRefGoogle Scholar
  16. 16.
    Kala, R., Shukla, A., Tiwari, R.: Fusion of probabilistic A* algorithm and fuzzy inference system for robotic path planning. Artif. Intell. Rev. 33(4), 307–327 (2010)CrossRefGoogle Scholar
  17. 17.
    Koudas, N., Ooi, B.C., Tan, K.-L., Zhang, R.: Approximate NN queries on streams with guaranteed error/performance bounds. In: VLDB, pp. 804–815, (2004)Google Scholar
  18. 18.
    Lambert, A., Bouaziz, S., Reynaud, R.: Shortest safe path planning for vehicles. In: Intelligent Vehicles Symposium, pp. 282–286 (2003)Google Scholar
  19. 19.
    Lambert, A., Gruyer, D.: Safe path planning in an uncertain-configuration space. Robot. Autom. 3, 4185–4190 (2003)Google Scholar
  20. 20.
    Leenen, L., Terlunen, A., Le Roux, H.: A constraint programming solution for the military unit path finding problem. Mob. Intell. Auto. Syst. 9(1), 225–240 (2012)CrossRefGoogle Scholar
  21. 21.
    Li, C., Gu, Y., Qi, J., Yu, G., Zhang, R., Deng, Q.: INSQ: an influential neighbor set based moving knn query processing system. In: ICDE, pp. 1338–1341 (2016)Google Scholar
  22. 22.
    Lu, Y., Shahabi, C.: An arc orienteering algorithm to find the most scenic path on a large-scale road network. In: SIGSPATIAL, pp. 46:1–46:10 (2015)Google Scholar
  23. 23.
    Mittal, S., Deb, K.: Three-dimensional offline path planning for UAVs using multiobjective evolutionary algorithms. Congr. Evolut. Comput. 7(1), 3195–3202 (2007)Google Scholar
  24. 24.
    Mora, A.M., Merelo, J.J., Millan, C., Torrecillas, J., Laredo, J.L.J., Castillo, P.A.: Enhancing a MOACO for solving the bi-criteria pathfinding problem for a military unit in a realistic battlefield. In: Applications of Evolutionary Computing, pp. 712–721 (2007)Google Scholar
  25. 25.
    Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The V*-diagram: a query-dependent approach to moving KNN queries. PVLDB 1(1), 1095–1106 (2008)Google Scholar
  26. 26.
    Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16(2), 187–260 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Saad Aljubayrin
    • 1
  • Jianzhong Qi
    • 1
  • Christian S. Jensen
    • 2
  • Rui Zhang
    • 1
    Email author
  • Zhen He
    • 3
  • Yuan Li
    • 1
  1. 1.University of MelbourneMelbourneAustralia
  2. 2.Aalborg UniversityAalborgDenmark
  3. 3.Latrobe UniversityMelbourneAustralia

Personalised recommendations