The VLDB Journal

, Volume 25, Issue 6, pp 867–892 | Cite as

Answering why-not and why questions on reverse top-k queries

  • Qing Liu
  • Yunjun Gao
  • Gang Chen
  • Baihua Zheng
  • Linlin Zhou
Regular Paper

Abstract

Why-not and why questions can be posed by database users to seek clarifications on unexpected query results. Specifically, why-not questions aim to explain why certain expected tuples are absent from the query results, while why questions try to clarify why certain unexpected tuples are present in the query results. This paper systematically explores the why-not and why questions on reverse top-k queries, owing to its importance in multi-criteria decision making. We first formalize why-not questions on reverse top-k queries, which try to include the missing objects in the reverse top-k query results, and then, we propose a unified framework called WQRTQ to answer why-not questions on reverse top-k queries. Our framework offers three solutions to cater for different application scenarios. Furthermore, we study why questions on reverse top-k queries, which aim to exclude the undesirable objects from the reverse top-k query results, and extend the framework WQRTQ to efficiently answer why questions on reverse top-k queries, which demonstrates the flexibility of our proposed algorithms. Extensive experimental evaluation with both real and synthetic data sets verifies the effectiveness and efficiency of the presented algorithms under various experimental settings.

Keywords

Reverse top-k query Why-not question Why question Result explanation Algorithm 

References

  1. 1.
    Arnold, S.J., Handelman, J., Tigert, D.J.: The impact of a market spoiler on consumer preference structures (or, what happens when Wal-Mart comes to town). J. Retail. Consum. Serv. 5(1), 1–13 (1998)CrossRefGoogle Scholar
  2. 2.
    Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD, pp. 322–331 (1990)Google Scholar
  3. 3.
    Berg, M., Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, New York (1997)CrossRefMATHGoogle Scholar
  4. 4.
    Bhagwat, D., Chiticariu, L., Tan, W.C., Vijayvargiya, G.: An annotation management system for relational databases. VLDB J. 14(4), 373–396 (2005)CrossRefGoogle Scholar
  5. 5.
    Bhowmick, S.S., Sun, A., Truong, B.Q.: Why not, wine? Towards answering why-not questions in social image search. In: MM, pp. 917–926 (2013)Google Scholar
  6. 6.
    Bidoit, N., Herschel, M., Tzompanaki, K.: Query-based why-not provenance with nedexplain. In: EDBT, pp. 145–156 (2014)Google Scholar
  7. 7.
    Bidoit, N., Herschel, M., Tzompanaki, K.: Efficient computation of polynomial explanations of why-not questions. In: CIKM, pp. 713–722 (2015)Google Scholar
  8. 8.
    Bidoit, N., Herschel, M., Tzompanaki, K.: EFQ: why-not answer polynomials in action. In: VLDB, pp. 1980–1991 (2015)Google Scholar
  9. 9.
    Buneman, P., Khanna, S., Tan, W.C.: Why and where: a characterization of data provenance. In: ICDT, pp. 316–330 (2001)Google Scholar
  10. 10.
    Carpenter, G.S., Nakamoto, K.: Consumer preference formation and pioneering advantage. J. Mark. Res. 26(3), 285–298 (1989)CrossRefGoogle Scholar
  11. 11.
    ten Cate, B., Civili, C., Sherkhonov, E., Tan, W.C.: High-level why-not explanations using ontologies. In: PODS, pp. 31–43 (2015)Google Scholar
  12. 12.
    Chang, Y.C., Bergman, L., Castelli, V., Li, C.S., Lo, M.L., Smith, J.R.: The onion technique: indexing for linear optimization queries. In: SIGMOD, pp. 391–402 (2000)Google Scholar
  13. 13.
    Chapman, A., Jagadish, H.V.: Why not? In: SIGMOD, pp. 523–534 (2009)Google Scholar
  14. 14.
    Chen, L., Gao, Y., Wang, K., Jensen, C.S., Chen, G.: Answering why-not questions on metric probabilistic range queries. In: ICDE (2016) (to appear)Google Scholar
  15. 15.
    Chen, L., Lin, X., Hu, H., Jensen, C.S., Xu, J.: Answering why-not questions on spatial keyword top-k queries. In: ICDE, pp. 297–290 (2015)Google Scholar
  16. 16.
    Chen, L., Xu, J., Lin, X., Jensen, C.S., Hu, H.: Answering why-not spatial keyword top-\(k\) queries via keyword adaption. In: ICDE (2016) (to appear)Google Scholar
  17. 17.
    Chester, S., Thomo, A., Venkatesh, S., Whitesides, S.: Indexing reverse top-k queries in two dimensions. In: DASFAA, pp. 201–208 (2013)Google Scholar
  18. 18.
    Chiticariu, L., Tan, W.C., Vijayvargiya, G.: Dbnotes: a post-it system for relational databases based on provenance. In: SIGMOD, pp. 942–944 (2005)Google Scholar
  19. 19.
    Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. VLDB J. 12(1), 41–58 (2003)CrossRefGoogle Scholar
  20. 20.
    Das, G., Gunopulos, D., Koudas, N., Tsirogiannis, D.: Answering top-k queries using views. In: VLDB, pp. 451–462 (2006)Google Scholar
  21. 21.
    Gao, Y., Liu, Q., Chen, G., Zheng, B., Zhou, L.: Answering why-not questions on reverse top-k queries. In: VLDB, pp. 738–749 (2015)Google Scholar
  22. 22.
    Ge, S., Hou, U.L., Mamoulis, N., Cheung, D.W.: Efficient all top-\(k\) computation: A unified solution for all top-\(k\), reverse top-\(k\) and top-\(m\) influential queries. IEEE Trans. Knowl. Data Eng. 25(5), 1015–1027 (2013)Google Scholar
  23. 23.
    Goh, K.Y., Teo, H.H., Wu, H., Wei, K.K.: Computer-supported negotiations: an experimental study of bargaining in electronic commerce. In: ICIS, pp. 104–116 (2000)Google Scholar
  24. 24.
    He, Z., Lo, E.: Answering why-not questions on top-k queries. In: ICDE, pp. 750–761 (2012)Google Scholar
  25. 25.
    He, Z., Lo, E.: Answering why-not questions on top-k queries. IEEE Trans. Knowl. Data Eng. 26(6), 1300–1315 (2014)CrossRefGoogle Scholar
  26. 26.
    Herschel, M.: Wondering why data are missing from query results?: Ask conseil why-not. In: CIKM, pp. 2213–2218 (2013)Google Scholar
  27. 27.
    Herschel, M., Hernandez, M.: Explaining missing answers to spjua queries. In: VLDB, pp. 185–196 (2010)Google Scholar
  28. 28.
    Herschel, M., Hernandez, M.A., Tan, W.C.: Artemis: a system for analyzing missing answers. In: VLDB, pp. 1550–1553 (2009)Google Scholar
  29. 29.
    Hristidis, V., Koudas, N., Papakonstantinou, Y.: Prefer: a system for the efficient execution of multi-parametric ranked queries. In: SIGMOD, pp. 259–270 (2001)Google Scholar
  30. 30.
    Hristidis, V., Papakonstantinou, Y.: Algorithms and applications for answering ranked queries using ranked views. VLDB J. 13(1), 49–70 (2013)CrossRefGoogle Scholar
  31. 31.
    Huang, J., Chen, T., Doan, A.H., Naughton, J.F.: On the provenance of non-answers to queries over extracted data. In: VLDB, pp. 736–747 (2008)Google Scholar
  32. 32.
    Islam, M., Liu, C., Li, J.: Efficient answering of why-not questions in similar graph matching. IEEE Trans. Knowl. Data Eng. 27(10), 2672–2686 (2015)CrossRefGoogle Scholar
  33. 33.
    Islam, M.S., Zhou, R., Liu, C.: On answering why-not questions in reverse skyline queries. In: ICDE, pp. 973–984 (2013)Google Scholar
  34. 34.
    Jagadish, H.V., Chapman, A., Elkiss, A., Jayapandian, M., Li, Y., Nandi, A., Yu, C.: Making database systems usable. In: SIGMOD, pp. 13–24 (2007)Google Scholar
  35. 35.
    Jin, C., Zhang, R., Kang, Q., Zhang, Z., Zhou, A.: Probabilistic reverse top-k queries. In: DASFAA, pp. 406–419 (2014)Google Scholar
  36. 36.
    Koh, J.L., Lin, C.Y., Chen, A.L.P.: Finding k most favorite products based on reverse top-t queries. VLDB J. 23(4), 541–564 (2014)CrossRefGoogle Scholar
  37. 37.
    Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: Why so? or why no? functional causality for explaining query answers. In: MUD, pp. 3–17 (2010)Google Scholar
  38. 38.
    Monteiro, R.D.C., Adler, I.: Interior path following primal-dual algorithms, part II: convex quadratic programming. Math. Program. 44(1–3), 43–66 (1989)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Padmanabhan, V., Rajiv, S., Srinivasan, K.: New products, upgrades, and new releases: a rationale for sequential product introduction. J. Mark. Res. 34(4), 456–472 (1997)CrossRefGoogle Scholar
  40. 40.
    Tan, W.C.: Provenance in databases: past, current, and future. IEEE Data Eng. Bull. 30(4), 3–12 (2007)Google Scholar
  41. 41.
    Tao, Y., Hristidis, V., Papadias, D., Papakonstantinou, Y.: Branch-and-bound processing of ranked queries. Inf. Syst. 32(3), 424–445 (2007)CrossRefGoogle Scholar
  42. 42.
    Tran, Q.T., Chan, C.Y.: How to conquer why-not questions. In: SIGMOD, pp. 15–26 (2010)Google Scholar
  43. 43.
    Vlachou, A., Doulkeridis, C., Kotidis, Y., Norvag, K.: Monochromatic and bichromatic reverse top-k queries. IEEE Trans. Knowl. Data Eng. 23(8), 1215–1229 (2011)CrossRefGoogle Scholar
  44. 44.
    Vlachou, A., Doulkeridis, C., Norvag, K.: Monitoring reverse top-k queries over mobile devices. In: MobiDE, pp. 17–24 (2011)Google Scholar
  45. 45.
    Vlachou, A., Doulkeridis, C., Norvag, K., Kotidis, Y.: Identifying the most influential data objects with reverse top-k queries. In: VLDB, pp. 364–372 (2010)Google Scholar
  46. 46.
    Vlachou, A., Doulkeridis, C., Norvag, K., Kotidis, Y.: Branch-and-bound algorithm for reverse top-k queries. In: SIGMOD, pp. 481–492 (2013)Google Scholar
  47. 47.
    Xie, M., Lakshmanan, L.V.S., Wood, P.T.: Efficient top-k query answering using cached views. In: EDBT, pp. 489–500 (2013)Google Scholar
  48. 48.
    Xin, D., Chen, C., Han, J.: Towards robust indexing for ranked queries. In: VLDB, pp. 235–246 (2006)Google Scholar
  49. 49.
    Yu, A., Agarwal, P.K., Yang, J.: Processing a large number of continuous preference top-k queries. In: SIGMOD, pp. 397–408 (2012)Google Scholar
  50. 50.
    Zong, C., Yang, X., Wang, B., Zhang, J.: Minimizing explanations for missing answers to queries on databases. In: DASFAA, pp. 254–268 (2013)Google Scholar
  51. 51.
    Zou, L., Chen, L.: Dominant graph: An efficient indexing structure to answer top-k queries. In: ICDE, pp. 536–545 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qing Liu
    • 1
  • Yunjun Gao
    • 1
    • 2
  • Gang Chen
    • 1
    • 2
  • Baihua Zheng
    • 3
  • Linlin Zhou
    • 1
  1. 1.College of Computer ScienceZhejiang UniversityHangzhouChina
  2. 2.The Key Lab of Big Data Intelligent Computing of Zhejiang ProvinceZhejiang UniversityHangzhouChina
  3. 3.School of Information SystemsSingapore Management UniversitySingaporeSingapore

Personalised recommendations