The VLDB Journal

, Volume 25, Issue 3, pp 425–447 | Cite as

Incremental k-core decomposition: algorithms and evaluation

  • Ahmet Erdem Sarıyüce
  • Buğra Gedik
  • Gabriela Jacques-Silva
  • Kun-Lung Wu
  • Ümit V. Çatalyürek
Regular Paper

Abstract

A k-core of a graph is a maximal connected subgraph in which every vertex is connected to at least k vertices in the subgraph. k-core decomposition is often used in large-scale network analysis, such as community detection, protein function prediction, visualization, and solving NP-hard problems on real networks efficiently, like maximal clique finding. In many real-world applications, networks change over time. As a result, it is essential to develop efficient incremental algorithms for dynamic graph data. In this paper, we propose a suite of incremental k-core decomposition algorithms for dynamic graph data. These algorithms locate a small subgraph that is guaranteed to contain the list of vertices whose maximum k-core values have changed and efficiently process this subgraph to update the k-core decomposition. We present incremental algorithms for both insertion and deletion operations, and propose auxiliary vertex state maintenance techniques that can further accelerate these operations. Our results show a significant reduction in runtime compared to non-incremental alternatives. We illustrate the efficiency of our algorithms on different types of real and synthetic graphs, at varying scales. For a graph of 16 million vertices, we observe relative throughputs reaching a million times, relative to the non-incremental algorithms.

Keywords

k-Core Streaming graph algorithms Dense subgraph discovery Incremental graph algorithms 

References

  1. 1.
    Aksu, H., Canim, M., Chang, Y., Korpeoglu, I., Ulusoy, O.: Distributed-Core View Materialization and Maintenance for Large Dynamic Graphs. Knowl Data Eng. IEEE Trans. 26(10), 2439–2452 (2014)Google Scholar
  2. 2.
    Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: k-Core decomposition: a tool for the visualization of large scale networks. In: The Computing Research Repository (CoRR), arXiv:abs/cs/0504107 (2005)
  3. 3.
    Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: Workshop on Algorithms and Models for the Web Graph (WAW), pp. 25–37 (2009)Google Scholar
  4. 4.
    Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf. 4(1), 1–27 (2003). doi:10.1186/1471-2105-4-2
  5. 5.
    Balasundaram, B., Butenko, S., Hicks, I.: Clique relaxations in social network analysis: the maximum \(k\)-plex problem. Oper. Res. 59, 133–142 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. In: The Computing Research Repository (CoRR), arXiv:cs.DS/0310049 (2003)
  8. 8.
    Baur, M., Gaertler, M., Görke, R., Krug, M., Wagner, D.: Augmenting k-core generation with preferential attachment. Netw. Heterog. Media 3(2), 277–294 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph mining. In: SIAM International Conference on Data Mining (SDM) (2004)Google Scholar
  10. 10.
    Cheng, J., Ke, Y., Chu, S., Ozsu, M.T.: Efficient core decomposition in massive networks. In: IEEE International Conference on Data Engineering (ICDE), pp. 51–62 (2011)Google Scholar
  11. 11.
    DIMACS. 10th DIMACS Implementation Challenge. http://www.cc.gatech.edu/dimacs10
  12. 12.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: k-core organization of complex networks. Phys. Rev. Lett. 96(4), 040601 (2006)Google Scholar
  13. 13.
    Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense communities in the web. In: World Wide Web Conference (WWW), pp. 461–470 (2007)Google Scholar
  14. 14.
    Erdős, P., Hajnal, A.: On chromatic number of graphs and set-systems. Acta Math. Hung. 17, 61–99 (1966)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Erdős, P., Rényi, A.: On the Evolution of Random Graphs, pp. 17–61. Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary (1960)Google Scholar
  16. 16.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 483(3–5), 75–174 (2009)MathSciNetGoogle Scholar
  17. 17.
    Gaertler, M.: Dynamic analysis of the autonomous system graph. In: International Workshop on Inter-domain Performance and Simulation (IPS), pp. 13–24 (2004)Google Scholar
  18. 18.
    Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: D-cores: Measuring collaboration of directed graphs based on degeneracy. In: IEEE International Conference on Data Mining (ICDM), pp. 201–210 (2011)Google Scholar
  19. 19.
    Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: Evaluating cooperation in communities with the \(k\)-core structure. In: International Conference on Advances in Social Network Analysis and Mining (ASONAM), pp. 87–93 (2011)Google Scholar
  20. 20.
    Healy, J., Janssen, J., Milios, E., Aiello, W.: Characterization of graphs using degree cores. In: Workshop on Algorithms and Models for the Web Graph (WAW), pp. 137–148 (2006)Google Scholar
  21. 21.
    Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–236 (1994)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Li, R.-H., Yu, J.X.: Efficient Core Maintenance in Large Dynamic Graphs. CoRR, arXiv:1207.4567 (2012)
  23. 23.
    Luczak, T.: Size and connectivity of the k-core of a random graph. Discrete Math. 91(1), 61–68 (1991)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Nanavati, A.A., Siva, G., Das, G., Chakraborty, D., Dasgupta, K., Mukherjea, S., Joshi, A.: On the structural properties of massive telecom call graphs: findings and implications. In: ACM International Conference on Information and Knowledge Management (CIKM), pp. 435–444 (2006)Google Scholar
  25. 25.
    Ozgul, F., Erdem, Z., Bowerman, C., Atzenbeck, C.: Comparison of feature-based criminal network detection models with k-core and n-clique. In: International Conference on Advances in Social Network Analysis and Mining (ASONAM), pp: 400–401 (2010)Google Scholar
  26. 26.
    Saito, H., Toyoda, M., Kitsuregawa, M., Aihara, K.: A large-scale study of link spam detection by graph algorithms. In: International Workshop on Adversarial Information Retrieval on the Web (AIRWeb), pp. 45–48 (2007)Google Scholar
  27. 27.
    Samudrala, R., Moult, J.: A graph-theoretic algorithm for comparative modeling of protein structure. J. Mol. Biol. 279(1), 287–302 (1998)CrossRefGoogle Scholar
  28. 28.
    Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.-L., Çatalyürek, Ü.V.: Streaming algorithms for k-core decomposition. In: Proceedings of the Very Large Data Bases Conference (PVLDB), pp. 433–444 (2013)Google Scholar
  29. 29.
    Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)MathSciNetCrossRefGoogle Scholar
  30. 30.
    SNAP. Stanford network analysis package. http://snap.stanford.edu/snap
  31. 31.
    Turaga, D., Andrade, H., Gedik, B., Venkatramani, C., Verscheure, O., Harris, J.D., Cox, J., Szewczyk, W., Jones, P.: Design principles for developing stream processing applications. Softw. Pract. Exp. 40(12), 1073–1104 (2010)CrossRefGoogle Scholar
  32. 32.
    Verma, A., Butenko, S.: Network clustering via clique relaxations: a community based approach. In: 10th DIMACS Implementation Challenge (2011)Google Scholar
  33. 33.
    Wuchty, S., Almaas, E.: Peeling the yeast protein network. Proteomics 5(2), 444–449 (2005)CrossRefGoogle Scholar
  34. 34.
    Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle k-core motifs within networks. In: IEEE International Conference on Data Engineering (ICDE), pp. 1049–1060 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ahmet Erdem Sarıyüce
    • 1
  • Buğra Gedik
    • 2
  • Gabriela Jacques-Silva
    • 3
  • Kun-Lung Wu
    • 3
  • Ümit V. Çatalyürek
    • 4
  1. 1.Sandia National LabsLivermoreUSA
  2. 2.Bilkent UniversityAnkaraTurkey
  3. 3.IBM T.J. Watson Research CenterYorktown HeightsUSA
  4. 4.The Ohio State UniversityColumbusUSA

Personalised recommendations