The VLDB Journal

, Volume 17, Issue 2, pp 265–289 | Cite as

An adaptive RFID middleware for supporting metaphysical data independence

  • Shawn R. Jeffery
  • Michael J. Franklin
  • Minos Garofalakis
Special Issue Paper

Abstract

Sensor devices produce data that are unreliable, low-level, and seldom able to be used directly by applications. In this paper, we propose metaphysical data independence (MDI), a layer of independence that shields applications from the challenges that arise when interacting directly with sensor devices. The key philosophy behind MDI is that applications do not deal with any aspect of physical device data, but rather interface with a high-level reconstruction of the physical world created by a sensor infrastructure. As a concrete instantiation of MDI in such a sensor infrastructure, we detail MDI-SMURF, a Radio Frequency Identification (RFID) middleware system that alleviates issues associated with using RFID data through adaptive techniques based on a novel statistical framework.

Keywords

Data cleaning RFID technology Statistical sampling Sensor-based applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alien Technology. Nanoscanner Reader User GuideGoogle Scholar
  2. 2.
    Merriam-Webster Online Dictionary. http://m-w.com
  3. 3.
    Abowd G.D. and Mynatt E.D. (2000). Charting past, present and future research in ubiquitous computing. ACM Trans. Comput. Human Inter. 7(1): 29–58 CrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Arasu A., Babu S. and Widom J. (2006). The CQL continuous query language: semantic foundations and query execution. VLDB J. 15(2): 121–142 CrossRefGoogle Scholar
  8. 8.
    Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: Proc. Mobile Data Management, Lecture Notes in Computer Science, vol. 1987. Springer, Hong Kong (2001)Google Scholar
  9. 9.
    Bornhövd, C., Lin, T., Haller, S., Schaper, J.: Integrating automatic data acquisition with business processes—experiences with SAP’s Auto-ID Infrastructure. In: VLDB (2004)Google Scholar
  10. 10.
    Boulos, J., Dalvi, N., Mandhani, B., Mathur, S., Re, C., Suciu, D.: MYSTIQ: a system for finding more answers by using probabilities. In: SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data (2005)Google Scholar
  11. 11.
    Buonadonna, P., Gay, D., Hellerstein, J.M., Hong, W., Madden, S.: TASK: Sensor network in a box. In: EWSN (2005)Google Scholar
  12. 12.
    Chen, J., Kam, A.H., Zhang, J., Liu, N., Shue, L.: Bathroom activity monitoring based on sound. In: Pervasive (2005)Google Scholar
  13. 13.
    Chiu D.M. and Jain R. (1989). Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. J. Comput. Netw. ISDN Syst. 17(1): 1–14 MATHCrossRefGoogle Scholar
  14. 14.
    Chu, D.C., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica, I.: The design and implementation of a declarative sensor network system. Tech. Rep. UCB/EECS-2006-132, EECS Department, University of California, Berkeley (2006). http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-132.html
  15. 15.
    Cochran W.G. (1977). “Sampling Techniques”. Wiley, New York Google Scholar
  16. 16.
    Dobkin, D., Weigand, S.: Tags vs. the world: HF and UHF tags in non-ideal environments. WCA RFID SIG (2005)Google Scholar
  17. 17.
    Deavours, D.D.: Performance analysis of commercially available UHF RFID tags based on EPCglobal’s Class 0 and Class 1 specifications. RFID Alliance Lab (2004)Google Scholar
  18. 18.
    Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-driven data acquisition in sensor networks. In: VLDB Conference (2004)Google Scholar
  19. 19.
    Deshpande, A., Madden, S.: Mauve D.B.: supporting model-based user views in database systems. In: SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data (2006)Google Scholar
  20. 20.
    Dey, A.K.: Providing architectural support for building context-aware applications. Ph.D. thesis, Georgia Institute of Technology (2000)Google Scholar
  21. 21.
    Elnahrawy, E., Nath, B.: Cleaning and querying noisy sensors. In: WSNA ’03: Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications (2003)Google Scholar
  22. 22.
  23. 23.
  24. 24.
    Fishkin, K.P., Jiang, B., Philipose, M., Roy, S.: I Sense a disturbance in the force: unobtrusive detection of interactions with RFID-tagged objects. In: Ubicomp (2004)Google Scholar
  25. 25.
    Franklin, M.J., Jeffery, S.R., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E., Cooper, O., Edakkunni, A., Hong, W.: Design considerations for high fan-in systems: the HiFi approach. In: CIDR (2005)Google Scholar
  26. 26.
    Garofalakis M.N., Brown K.P., Franklin M.J., Hellerstein J.M., Wang D.Z., Michelakis E., Tancau L., Wu E., Jeffery S.R. and Aipperspach R. (2006). Probabilistic data management for pervasive computing: the data furnace project. IEEE Data Eng. Bull. 29(1): 57–63 Google Scholar
  27. 27.
    Guestrin, C., Bodi, P., Thibau, R., Paski, M., Madden, S.: Distributed regression: an efficient framework for modeling sensor network data. In: IPSN’04: Proceedings of the Third International Symposium on Information Processing in Sensor Networks (2004)Google Scholar
  28. 28.
    Gupta, A., Srivastava, M.: Developing Auto-ID Solutions using Sun Java System RFID Software (2004). http://java.sun.com/developer/technicalArticles/Ecommerce/rfid/sjsrfid/RFID.html
  29. 29.
    Hahnel, D., Burgard, W., Fox, D., Fishkin, K., Philipose, M.: Mapping and localization with RFID technology. In: ICRA (2004)Google Scholar
  30. 30.
    Hightower, J., Brumitt, B., Borriello, G.: The Location Stack: A Layered Model for Location in Ubiquitous Computing. In: Proceedings of the 4th IEEE Workshop on Mobile Computing Systems & Applications (WMCSA 2002), pp. 22–28. IEEE Computer Society Press, Callicoon (2002)Google Scholar
  31. 31.
  32. 32.
    Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W., Widom, J.: Virtual devices: an extensible architecture for bridging the physical-digital divide. Tech. Rep. UCB-CS-05-1375, UC Berkeley CS Division (2005)Google Scholar
  33. 33.
    Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W., Widom, J.: A Pipelined framework for online cleaning of sensor data streams. In: ICDE (2006)Google Scholar
  34. 34.
    Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W., Widom, J.: Declarative support for sensor data cleaning. In: Pervasive (2006)Google Scholar
  35. 35.
    Jeffery, S.R., Garofalakis, M., Franklin, M.J.: Adaptive cleaning for RFID data streams. In: VLDB’2006: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 163–174 (2006)Google Scholar
  36. 36.
    Khoussainova, N., Balazinska, M., Suciu, D.: Towards correcting input data errors probabilistically using integrity constraints. In: MobiDE ’06: Proceedings of the 5th ACM International Workshop on Data Engineering for Wireless and Mobile Access (2006)Google Scholar
  37. 37.
    Krishnamurthy, S.: Shared query processing in data streaming systems. Ph.D. thesis, University of California, Berkeley (2006)Google Scholar
  38. 38.
    Laurie, S.: RFID implementation challenges persist, all this time later. Information Week (2005)Google Scholar
  39. 39.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong:, W.: The design of an acquisitional query processor for sensor networks. In: SIGMOD (2003)Google Scholar
  40. 40.
    Manage Data Successfully with RFID Anywhere Edge Processing. http://www.ianywhere.com/developer/rfid_anywhere/rfidanywhere_edgeprocessing.pdf
  41. 41.
    Martonosi, M.: Embedded systems in the wild: Zebranet software, hardware, and deployment experiences. In: LCTES (2006)Google Scholar
  42. 42.
    Motwani, R., Raghavan, P.: “Randomized Algorithms”. Cambridge (1995)Google Scholar
  43. 43.
    Mukhopadhyay, S., Panigrahi, D., Dey, S.: Data aware, low cost error correction for wireless sensor networks. In: WCNC (2004)Google Scholar
  44. 44.
    Mutsuzaki, M., Theobald, M., de Keijzer, A., Widom, J., Agrawal, P., Benjelloun, O., Sarma, A.D., Murthy, R., Sugihara, T.: Trio-one: layering uncertainty and lineage on a conventional DBMS. In: Proceedings of the Third Biennial Conference on Innovative Data Systems Research (CIDR ’07) (2007)Google Scholar
  45. 45.
  46. 46.
    OpenGIS Sensor Model Language (SensorML) (05-086r2). http://portal.opengeospatial.org/files/?artifact_id=13879
  47. 47.
    Pitas I. and Venetsanopoulos A.N. (1990). Nonlinear Digital Filters: Principles and Applications. Kluwer, Boston MATHGoogle Scholar
  48. 48.
    Plato: “Republic”Google Scholar
  49. 49.
    Qin S. (1996). Neural networks for intelligent sensors and control—practical issues and some solutions Chap. 8. In: Elliott, D. (eds) Neural Networks for Control. Academic, New York Google Scholar
  50. 50.
    Rao, J., Doraiswamy, S., Thakkar, H., Colby, L.S.: A deferred cleansing method for rfid data analytics. In: VLDB’2006: Proceedings of the 32nd International Conference on Very Large Data Bases (2006)Google Scholar
  51. 51.
    Rizvi, S., Jeffery, S.R., Krishnamurthy, S., Franklin, M.J., Burkhart, N., Edakkunni, A., Liang, L.: Events on the edge. In: SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data (2005)Google Scholar
  52. 52.
    Rousu, J., Elomaa, T., Aarts, R.J.: Predicting the speed of beer fermentation in laboratory and industrial scale. In: IWANN (2), pp. 893–901 (1999)Google Scholar
  53. 53.
    Sarma, A.D., Jeffery, S.R., Franklin, M.J., Widom, J.: Estimating data stream quality for object-detection applications. In: IQIS (2006)Google Scholar
  54. 54.
    Särndal, C.E., Swensson, B., Wretman, J.: Model assisted survey sampling. Springer, New York (Springer Series in Statistics) (1992)Google Scholar
  55. 55.
    Senosrmatic Agile 2 915Hz RFID Reader. http://www.sensormatic.com/RFID/stationary/
  56. 56.
    Tyco SensorID Series 2 Agile Reader Query Protocol Reference Guide. Document 8200-0222-09 Rev.A. April 9, 2004Google Scholar
  57. 57.
    Sharp, C., Schaffert, S., Woo, A., Sastry, N., Karlof, C., Sastry, S., Culler, D.: Design and implementation of a sensor network system for vehicle tracking and autonomous interception. In: Proceedings of the Second European Workshop on Wireless Sensor Networks (2005)Google Scholar
  58. 58.
    Smith, J.R., Sample, A.P., Powledge, P.S., Roy, S., Mamishev, A.: A wirelessly-powered platform for sensing and computation. In: Ubicomp, pp. 495–506 (2006)Google Scholar
  59. 59.
    Sonoma Redwood Sensor Network Deployment. http://www.cs.berkeley.edu/get/sonoma/
  60. 60.
    Tolle, G., Polastre, J., Szewczyk, R., Culler, D.E., Turner, N., Tu, K., Burgess, S., Dawson, T., Buonadonna, P., Gay, D., Hong, W.: A macroscope in the redwoods. In: SenSys, pp. 51–63 (2005)Google Scholar
  61. 61.
  62. 62.
    Wang, F., Liu, P.: Temporal management of RFID Data. In: VLDB, pp. 1128–1139 (2005)Google Scholar
  63. 63.
    Want R. (2004). The magic of RFID. ACM Queue 2(7): 40–48 CrossRefGoogle Scholar
  64. 64.
    Whitehouse, K., Zhao, F., Liu, J.: Automatic programming with semantic streams. In: SenSys ’05: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (2005)Google Scholar
  65. 65.
    Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In: SIGMOD Conference (2006)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Shawn R. Jeffery
    • 1
  • Michael J. Franklin
    • 1
  • Minos Garofalakis
    • 2
  1. 1.UC BerkeleyBerkeleyUSA
  2. 2.Yahoo! Research and UC BerkeleyBerkeleyUSA

Personalised recommendations