The VLDB Journal

, Volume 14, Issue 4, pp 417–443

Model-based approximate querying in sensor networks

  • Amol Deshpande
  • Carlos Guestrin
  • Samuel R. Madden
  • Joseph M. Hellerstein
  • Wei Hong
Regular Paper


Declarative queries are proving to be an attractive paradigm for interacting with networks of wireless sensors. The metaphor that “the sensornet is a database” is problematic, however, because sensors do not exhaustively represent the data in the real world. In order to map the raw sensor readings onto physical reality, a model of that reality is required to complement the readings. In this article, we enrich interactive sensor querying with statistical modeling techniques. We demonstrate that such models can help provide answers that are both more meaningful, and, by introducing approximations with probabilistic confidences, significantly more efficient to compute in both time and energy. Utilizing the combination of a model and live data acquisition raises the challenging optimization problem of selecting the best sensor readings to acquire, balancing the increase in the confidence of our answer against the communication and data acquisition costs in the network. We describe an exponential time algorithm for finding the optimal solution to this optimization problem, and a polynomial-time heuristic for identifying solutions that perform well in practice. We evaluate our approach on several real-world sensor-network datasets, taking into account the real measured data and communication quality, demonstrating that our model-based approach provides a high-fidelity representation of the real phenomena and leads to significant performance gains versus traditional data acquisition techniques.


Sensor networks Approximate querying Probabilistic models Conditional plans Model-driven data acquisition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    SenSys: Call for Papers. (2004)
  2. 2.
  3. 3.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query processor for sensor networks. In: ACM SIGMOD (2003)Google Scholar
  4. 4.
    Yao, Y., Gehrke, J.: Query processing in sensor networks. In: Conference on Innovative Data Systems Research (CIDR) (2003)Google Scholar
  5. 5.
    Kollios, G., Considine, J., Li, F., Byers, J.: Approximate aggregation techniques for sensor databases. In: ICDE (2004)Google Scholar
  6. 6.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)MATHGoogle Scholar
  7. 7.
    Crossbow, Inc.: Wireless sensor networks.
  8. 8.
    Madden, S., Hong, W., Hellerstein, J.M., Franklin, M.: TinyDB web page.
  9. 9.
    Madden, S.: The design and evaluation of a query processing architecture for sensor networks. Master’s thesis, UC Berkeley (2003)Google Scholar
  10. 10.
    TAOS, Inc.: Tsl2550 ambient light sensor. Technical report. (2002)
  11. 11.
    Intersema: Ms5534a barometer module. Technical report. (2002)
  12. 12.
    Sensirion: Sht11/15 relative humidity sensor. Technical report. (2002)
  13. 13.
    Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust communication paradigm for sensor networks. In: MobiCOM, Boston, MA (2000)Google Scholar
  14. 14.
    Pottie, G., Kaiser, W.: Wireless integrated network sensors. Commun. ACM 43(5), 51–58 (2000)CrossRefGoogle Scholar
  15. 15.
    Polastre, J.: Design and implementation of wireless sensor networks for habitat monitoring. Master’s thesis, UC Berkeley (2003)Google Scholar
  16. 16.
    Lin, S., Kernighan, B.: An effective heuristic algorithm for the tsp. Oper. Res. 21, 498–516 (1971)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi, F.: Algebraic decision diagrams and their applications. In: IEEE Internation Conference on Computer-Aided Design, pp. 188–191 (1993)Google Scholar
  18. 18.
    Deshpande, A., Guestrin, C., Madden, S., Hong, W.: Exploiting correlated attributes in acquisitional query processing. In: ICDE (2005)Google Scholar
  19. 19.
    Olston, C., Widom, J.: Best effort cache sychronization with source cooperation. In: SIGMOD (2002)Google Scholar
  20. 20.
    Sharaf, A., Beaver, J., Labrinidis, A., Chrysanthis, K.: Balancing energy efficiency and quality of aggregate data in sensor networks. VLDB J. 13(4), 384–403 (2004)CrossRefGoogle Scholar
  21. 21.
    Deshpande, A., Garofalakis, M., Rastogi, R.: Independence is good: Dependency-based histogram synopses for high-dimensional data. In: SIGMOD (2001)Google Scholar
  22. 22.
    Friedman, N.: Learning belief networks in the presence of missing values and hidden variables. In: Proceedings of the 14th International Conference on Machine Learning, pp. 125–133 (1997)Google Scholar
  23. 23.
    Ganguly, S.: Design and analysis of parametric query optimization algorithms. In: VLDB’98, Proceedings of 24rd International Conference on Very Large Data Bases (1998)Google Scholar
  24. 24.
    Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models. In: SIGMOD (2001)Google Scholar
  25. 25.
    Gibbons, P.B.: Distinct sampling for highly-accurate answers to distinct values queries and event reports. In: Proceedings of Conference on Very Large Data Bases (2001)Google Scholar
  26. 26.
    Desphande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-driven data acquisition in sensor networks. In: Proceedings of Conference on Very Large Data Bases (2004)Google Scholar
  27. 27.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, San Mateo, CA (1988)Google Scholar
  28. 28.
    Cowell, R., Dawid, P., Lauritzen, S., Spiegelhalter, D.: Probabilistic Networks and Expert Systems. Springer, New York (1999)MATHGoogle Scholar
  29. 29.
    Paskin, M.A., Guestrin, C.E.: Robust probabilistic inference in distributed systems. In: UAI, the 20th International Conference on Uncertainty in Artificial Intelligence (2004)Google Scholar
  30. 30.
    Heckerman, D.: A tutorial on learning with bayesian networks, Microsoft, MSR-TR-95-06, March (1995)Google Scholar
  31. 31.
    Lerner, U., Moses, B., Scott, M., McIlraith, S., Koller, D.: Monitoring a complex physical system using a hybrid dynamic bayes net. In: Proceedings of UAI (2002)Google Scholar
  32. 32.
    Boyen, X., Koller, D.: Tractable inference for complex stochastic processes. In: Proceedings of UAI (1998)Google Scholar
  33. 33.
    Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation. Comput. Intell. 5(3), 142–150 (1989)Google Scholar
  34. 34.
    Pearl, J.: Causality : Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  35. 35.
    Bernardo, J., Smith, A.: Bayesian Theory. Wiley, New York (1994)MATHGoogle Scholar
  36. 36.
    Bellman, R.E.: Dynamic Programming. Princeton, Princeton, NJ (1957)Google Scholar
  37. 37.
    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)Google Scholar
  38. 38.
    Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy construction. In: Proceedings of IJCAI, pp. 1104–1111 (1995)Google Scholar
  39. 39.
    Guestrin, C.E., Koller, D., Parr, R.: Multiagent planning with factored MDPs. In: 14th Neural Information Processing Systems (NIPS-14), Vancouver, Canada, pp. 1523–1530 (2001)Google Scholar
  40. 40.
    Hellerstein, J., Hong, W., Madden, S., Stanek, K.: Beyond average: Towards sophisticated sensing with queries. In: Proceedings of the First Workshop on Information Processing in Sensor Networks (IPSN) (2003)Google Scholar
  41. 41.
    Guestrin, C., Bodik, P., Thibaux, R., Paskin, M., Madden, S.: Distributed regression: An efficient framework for modeling sensor network data. In: Proceedings of Information Processing in Sensor Networks (IPSN) (2004)Google Scholar
  42. 42.
    Gibbons, P.B., Matias, Y.: New sampling-based summary statistics for improving approximate query answers. In: SIGMOD (1998)Google Scholar
  43. 43.
    Acharya, S., Gibbons, P., Poosala, V., Ramaswamy, S.: Join synopses for approximate query answering, SIGMOD’99. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, 275–286. ACM Press, New York, NY, USA, Philadelphia, Pennsylvania, United States (1999) ISBN: 1-58113-084-8, DOI: (
  44. 44.
    Nath, S., Gibbons, P., Seshan, S., Anderson, Z.: Synopsis diffusion for robust aggregation in sensor networks. In: Proceedings of SenSys (2004)Google Scholar
  45. 45.
    Olston, C., Loo, B.T., Widom, J.: Adaptive precision setting for cached approximate values. In: ACM SIGMOD (2001)Google Scholar
  46. 46.
    Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating probabilistic queries over imprecise data. In: SIGMOD (2003)Google Scholar
  47. 47.
    Chu, M., Haussecker, H., Zhao, F.: Scalable information-driven sensor querying and routing for ad hoc heterogeneous networks. Int. J. High Perform. Comput. Appl. 16(2), 293–313 (2002)CrossRefGoogle Scholar
  48. 48.
    Hellerstein, J.M., Haas, P.J., Wang, H.: Online aggregation. In: SIGMOD, Tucson, AZ, pp. 171–182 (1997)Google Scholar
  49. 49.
    Hellerstein, J.M., Avnur, R., Chou, A., Hidber, C., Olston, C., Raman, V., Roth, T., Haas, P.J.: Interactive data analysis with CONTROL. IEEE Comput. 32(8) (1999)Google Scholar
  50. 50.
    Ioannidis, Y.E., Ng, R.T., Shim, K., Sellis, T.K.: Parametric query optimization. In: Proceedings of the 18th International Conference on Very Large Data Bases (1992)Google Scholar
  51. 51.
    Graefe, G., Ward, K.: Dynamic query evaluation plans. In: SIGMOD (1989)Google Scholar
  52. 52.
    Cole, R., Graefe, G.: Optimization of dynamic query evaluation plans. In: SIGMOD (1994)Google Scholar
  53. 53.
    Hellerstein, J.M., Franklin, M.J., Chandrasekaran, S., Deshpande, A., Hildrum, K., Madden, S., Raman, V., Shah, M.: Adaptive query processing: Technology in evolution. IEEE Data Eng. Bull. 23(2), 7–18 (2000)Google Scholar
  54. 54.
    Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive ordering of pipelined stream filters. In: SIGMOD (2004)Google Scholar
  55. 55.
    Shivakumar, N., Garcia-Molina, H., Chekuri, C.: Filtering with approximate predicates. In: Proceedings of Conference on Very Large Data Bases (1998)Google Scholar
  56. 56.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs, NJ (1994)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Amol Deshpande
    • 1
  • Carlos Guestrin
    • 2
  • Samuel R. Madden
    • 3
  • Joseph M. Hellerstein
    • 4
    • 5
  • Wei Hong
    • 4
    • 5
  1. 1.University of MarylandCollege ParkUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA
  3. 3.Massachusetts Institute of TechnologyCambridgeUSA
  4. 4.Intel ResearchBerkeleyUSA
  5. 5.University of CaliforniaBerkeleyUSA

Personalised recommendations