On shock waves and phase-transition fronts in continua

Abstract

The canonical formalism that considers simultaneously the second law of thermodynamics and the balance of canonical momentum is used to incorporate the case of shock waves among those singularity sets whose dissipation is in fact related to the power expanded by a driving force — a force on the material manifold and not in physical space — in an irreversible motion of the singularity set. A relationship between this and the presence of a generally non-zero quasi-inhomogeneity material force at the wave front is established. Extensions to electromagnetic continua of various types are given and the case of shock waves is thoroughly compared to that of phase-transition fronts in the same continua. The relationship with solitonic and moving localized dissipative structures is enunciated.

This is a preview of subscription content, access via your institution.

References

  1. Ani W, Maugin GA (1988) One-dimensional nonlinear motions in electroelastic materials. Z Angew Math Mech 39:277–298

    Google Scholar 

  2. Ani W, Maugin GA (1989) Basic equations for shocks in nonlinear electroelastic materials. J Acoust Soc Am 85:599–610

    Article  Google Scholar 

  3. Bazer J, Erickson WB (1974) Nonlinear wave motion in magnetoelasticity. Arch Rat Mech Anal 55:124–192

    Article  Google Scholar 

  4. Bland DR (1969) Nonlinear dynamic elasticity. Blaisdell, Waltham, Mass

    Google Scholar 

  5. Cadet S, Maugin GA (1991) Existence of solitary waves in martensitic alloys. Int J Eng Sci 29:243–255

    Article  Google Scholar 

  6. Collet B (1987) Transient nonlinear waves in deformable dielectric materials. In: Yamamoto Y, Miya K (eds) Electromagneto-mechanical interactions in deformable solids and structures. North Holland, Amsterdam, pp 329–334

    Google Scholar 

  7. Daher N, Maugin GA (1986) Virtual power and thermodynamics for electromagnetic continua with interfaces. J Math Phys 9: 269–288

    Google Scholar 

  8. Daher N, Maugin GA (1987) Deformable semiconductors with interfaces: basic equations. Int J Eng Sci 25:1093–1129

    Article  Google Scholar 

  9. Dascalu C, Maugin GA (1993) Material forces and energy release rate in homogeneous elastic solids with defects. C R Acad Sci Paris II-317:1135–1140

    Google Scholar 

  10. Dems L, Mroz Z (1985) Stability conditions for brittle-plastic structures with propagating damage surfaces. J StructMech 13:95–122

    Google Scholar 

  11. Duvaut G (1969) Sur les ondes de choc longitudinales dans les milieux élastiques non linéaires. J Méc Paris 6:371–404

    Google Scholar 

  12. Eringen AC, Maugin GA (1990) Electrodynamics of continua vol. I. Springer, Berlin Heidelberg New York

    Google Scholar 

  13. Fomethe A, Maugin GA (1997) Propagation of phase-transition fronts and domain walls in hard ferromagnets. Int J Appl Electromagn Mech 8:143–165

    Google Scholar 

  14. Germain P (1972) Shock waves, jump relations and structures. In: Yih CS (ed) Advances in applied mechanics. Academic Press, New York, pp 131–194

    Google Scholar 

  15. Grinfeld M(1991) Thermodynamic methods in the theory of heterogeneous media. ISIMM Series Longman, Harrow Essex

    Google Scholar 

  16. Jeffrey A, Taniuti T (1964) Nonlinear wave propagation with applications to physics and magnetohydrodynamics. Academic Press, New York

  17. Mandel J (1966) Cours de mécanique des milieux continus vol. I. Gauthier-Villars, Paris

    Google Scholar 

  18. Maugin GA (1979) Nonlinear waves in relativistic continuum mechanics. Helv Phys Acta (centennary of A. Einstein) 52:149–170

    Google Scholar 

  19. Maugin GA (1988) Continuum mechanics of electromagnetic solids. North Holland, Amsterdam

  20. Maugin GA (1993a) Material inhomogeneities in elasticity. Chapman and Hall, London

    Google Scholar 

  21. Maugin GA (1993b) Non-equilibrium thermodynamics of electromagnetic solids. In: Muschik W (ed) Non-equilibrium thermodynamics with applications to solids. Springer, Wien, pp 205–258

    Google Scholar 

  22. Maugin GA (1995) Material forces: concepts and applications. Appl Mech Rev 48:213–245

    Article  Google Scholar 

  23. Maugin GA (1996) Canonical momentum and energy in elastic systems with additional state variables. C R Acad Sci Paris II-323b:407–412

    Google Scholar 

  24. Maugin GA (1997a) Canonical approach to thermoelastic solids with weakly nonlocal microstructure: application to fracture and phase-transition fronts. In Hetnarski RB, Noda N (eds) Thermal stresses’97, Lestran, Rochester USA, pp 425–428

  25. Maugin GA (1997b) Thermomechanics of inhomogeneous-heterogeneous systems: application to the irreversible progress of twoand three-dimensional defects. ARI 50:41–56

    Google Scholar 

  26. Maugin GA (1997c) On the structure of the theory of polar elasticity. Phil Trans R Soc Lond A355:1–28

    Google Scholar 

  27. Maugin GA (1997d) Introduction of the notion of material forces of inhomogeneity at interfaces in composites. C R Acad Sci Paris (in press)

  28. Maugin GA, Christov CI (1997) Nonlinear duality between elastic waves and quasi-particles in microstructured solids. Proc Estonian Acad Sci (special issue — Euromech 348-1997) A46:78–84

    Google Scholar 

  29. Maugin GA, Muschik W (1994) Thermodynamics with internal variables, parts I and II. J Non-Equilibr Thermodyn 19:217–289

    Google Scholar 

  30. Maugin GA, Trimarco C (1995a) Configurational forces and coherent phase-transitions in thermoelastic solids. In England AH, Parker DF (eds) Anisotropy, inhomogeneity and nonlinearity in solid mechanics. Kluwer Acad, Amsterdam, pp 345–355

    Google Scholar 

  31. Maugin GA, Trimarco C (1995b) The dynamics of configurational forces at phase-transition fronts. Meccanica 30:605–619

    Article  Google Scholar 

  32. Maugin GA, Trimarco C (1997) Driving force on phase-transition fronts in thermoelectroelastic crystals. Math Mech Solids 2:199–214

    Article  Google Scholar 

  33. Maugin GA, Pouget J, Drouot R, Collet B (1992) Nonlinear electromechanical couplings. Wiley, New York

    Google Scholar 

  34. Pradeilles-Duval RM, Stolz C (1991) Sur le problème d’évolution des solides avec changement de phase irréversible. C R Acad Sci Paris II-313:293–302

    Google Scholar 

  35. Stolz C (1988) Sur les équations générales de la dynamique des milieux continus anélastiques. C R Acad Sci Paris II-307: 1997–2000

    Google Scholar 

  36. Stolz C (1989) Sur la propagation d’une ligne de discontinuité et la fonction génératrice de choc pour un solide anélastique. C R Acad Sci Paris II-308:1–3

    Google Scholar 

  37. Stolz C (1994) Sur le problème d’évolution thermomécanique des solides à changement brutal de caractéristiques. C R Acad Sci Paris II-318:1425–1428

    Google Scholar 

  38. Stolz C (1995) Functional approach in nonlinear dynamics. Arch Mech Poland 47:421–435

    Google Scholar 

  39. Truskinowskii LM (1987) Dynamics of non-equilibrium phase boundaries in a heat 7 nonlinear elastic medium. PMM (English translation) 51:777–784

    Google Scholar 

  40. TruskinowskyLM (1992) Kinks versus shocks. In: Fosdick R, Dunn JE, Slemrod M (eds) Shock-induced transitions and phase structures in general media. IMA Vol. 52, Springer, Berlin Heidelberg New York, pp 151–172

    Google Scholar 

  41. Truskinowsky LM (1994) About the “normal growth” approximation in the dynamical theory of phase transitions. Cont Mech Thermodyn 6:185–208

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. A. Maugin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maugin, G.A. On shock waves and phase-transition fronts in continua. ARI 50, 141–150 (1998). https://doi.org/10.1007/s007770050008

Download citation

Key words

  • Continua
  • Shock waves
  • Phase transition
  • Heterogeneity
  • Discontinuity
  • Entropy