Skip to main content
Log in

Accuracy of specimen-specific nonlinear finite element analysis for evaluation of distal radius strength in cadaver material

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

Distal radius fracture, which often occurs in the setting of osteoporosis, can lead to permanent deformity and disability. Great effort has been directed toward developing noninvasive methods for evaluating the distal radius strength, with the goal of assessing fracture risk. The aim of this study was to evaluate distal radius strength using a finite element model and to gauge the accuracy of finite element model measurement using cadaver material.

Methods

Ten wrists were obtained from cadavers with a mean age of 89.5 years at death. CT images of each wrist in an extended position were obtained. CT-based finite element models were prepared with Mechanical Finder software. Fracture on the models was simulated by applying a mechanical load to the palm in a direction parallel to the forearm axis, after which the fracture load and the site at which the fracture began were identified. For comparison, the wrists were fractured using a universal testing machine and the fracture load and the site of fracture were identified.

Results

The fracture load was 970.9 N in the finite element model group and 990.0 N in the actual measurement group. The site of the initial fracture was extra-articular to the distal radius in both groups. The finite element model was predictive for distal radius fracture when compared to the actual measurement.

Conclusion

In this study, a finite element model for evaluation of distal radius strength was validated and can be used to predict fracture risk. We conclude that a finite element model is useful for the evaluation of distal radius strength. Knowing distal radius strength might avoid distal radius fracture because appropriate antiosteoporotic treatment can be initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vogt MT, Cauley JA, Tomaino MM, Stone K, Williams JR, Herndon JH. Distal radius fractures in older women: a 10-year follow-up study of descriptive characteristics and risk factors. The study of osteoporotic fractures. J Am Geriatr Soc. 2001;50:97–103.

    Article  Google Scholar 

  2. Roux JP, Wegrzyn J, Arlot ME, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML. Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study. J Bone Miner Res. 2009;25:356–61.

    Article  Google Scholar 

  3. Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, Berger ML. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164:1108–12.

    Article  PubMed  Google Scholar 

  4. NIH Consensus Development Panel on Osteoporosis Prevention. Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785–95.

    Article  Google Scholar 

  5. Davison KS, Siminoski K, Adachi JD, Hanley DA, Goltzman D, Hodsman AB, Josse R, Kaiser S, Olszynski WP, Papaioannou A, Ste-Marie LG, Kendler DL, Tenenhouse A, Brown JP. Bone strength: the whole is greater than the sum of its parts. Semin Arthritis Rheum. 2006;36:22–31.

    Article  PubMed  Google Scholar 

  6. Hayes WC, Piazza SJ, Zysset PK. Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin North Am. 1991;29:1–18.

    CAS  PubMed  Google Scholar 

  7. Silva MJ. Biomechanics of osteoporotic fractures. Injury. 2007;38:S69–76.

    Article  PubMed  Google Scholar 

  8. Edwards WB, Troy KL. Finite element prediction of surface strain and fracture strength at the distal radius. Med Eng Phys. 2012;34:290–8.

    Article  PubMed  Google Scholar 

  9. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 1999;32:1013–20.

    Article  CAS  PubMed  Google Scholar 

  10. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31:125–33.

    Article  CAS  PubMed  Google Scholar 

  11. Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys. 2001;23:1651–73.

    Google Scholar 

  12. Keyak JH, Rossi SA, Jones KA, Les CM, Skinner HB. Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys. 2001;23:657–64.

    Article  CAS  PubMed  Google Scholar 

  13. Imai K, Ohnishi I, Bessho M, Nakamura K. Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine. 2006;31:1789–94.

    Article  PubMed  Google Scholar 

  14. Silva MJ, Keaveny TM, Hayes WC. Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J Orthop Res. 1998;16:300–8.

    Article  CAS  PubMed  Google Scholar 

  15. Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM. Finite element modelling of the human thoracolumbar spine. Spine. 2003;28:559–65.

    PubMed  Google Scholar 

  16. Crawford RP, Can CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33:744–50.

    Article  PubMed  Google Scholar 

  17. Varga P, Baumbach S, Pahr D, Zysset PK. Validation of an anatomy specific finite element model of Colles’ fracture. J Biomech. 2009;42:1726–31.

    Article  CAS  PubMed  Google Scholar 

  18. Muller M, Mitton D, Moilanen P, Bousson V, Talmant M, Laugier P. Prediction of bone mechanical properties using QUS and pQCT: study of the human distal radius. Med Eng Phys. 2008;30:761–7.

    Article  CAS  PubMed  Google Scholar 

  19. McBrom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA 3rd. Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am. 1985;67:1206–14.

    Google Scholar 

  20. Faulkner KG, Cann CE, Hasegawa BH. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology. 1991;179:669–74.

    Article  CAS  PubMed  Google Scholar 

  21. Overaker DW, Langrana NA, Cuitino AM. Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core. J Biomech Eng. 1999;121:542–50.

    Article  CAS  PubMed  Google Scholar 

  22. Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech. 1990;23:1103–13.

    Article  CAS  PubMed  Google Scholar 

  23. Katsamanis F, Raftopoulos DD. Determination of mechanical properties of human femoral cortical bone by the Hopkison bar stress technique. J Biomech. 1990;23:1173–84.

    Article  CAS  PubMed  Google Scholar 

  24. DeGoede KM, Ashton-Miller JA, Schultz AB. Fall-related upper body injuries in the older adult: a review of the biomechanical issues. J Biomech. 2003;36:1043–53.

    Article  CAS  PubMed  Google Scholar 

  25. Ota T, Yamamoto I, Morita R. Fracture simulation of the femoral bone using the finite-element method: how a fracture initiates and proceeds. J Bone Miner Metab. 1999;17:108–12.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta S, van der Helm FC, Sterk JC, van Keulen F, Kaptien BL. Development and experimental validation of a three-dimensional finite element model of the human scapula. Proc Inst Mech Eng H. 2004;218:127–42.

    Article  CAS  PubMed  Google Scholar 

  27. Anderson AE, Peters CL, Tuttle BD, Weiss JA. Subject-specific finite element model of the pelvis: development validation and sensitivity studies. J Biomech Eng. 2005;127:364–73.

    Article  PubMed  Google Scholar 

  28. Keyak JH, Fourkas MG, Meagher JM, Skinner HB. Validation of an automated method of three-dimensional finite element modelling of bone. J Biomed Eng. 1993;15:505–9.

    Article  CAS  PubMed  Google Scholar 

  29. Taddei F, Cristofolini L, Martelli S, Gill HS, Viceconti M. Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J Biomech. 2006;2006(39):2457–67.

    Article  Google Scholar 

  30. Gray HA, Taddei F, Zavatsky AB, Cristofolini L, Gill HS. Experimental validation of a finite element model of a human cadaveric tibia. J Biomech Eng. 2008;130:31016–21.

    Article  Google Scholar 

Download references

Acknowledgement

We thank Chisato Mori, Kenji Tsubota, Ryo Hiwatari, Kenichi Murakami, Ken Hashimoto, Seiji Okamoto, Masataka Shibayama, Tomoko Kobayashi, Nahoko Iwakura, Noriyuki Yanagawa, Naoki Hara, Hideyuki Mimata, Shigeru Matsunaga, Ayako Takiguchi, and all of the radiorogists for technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Matsuura.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuura, Y., Kuniyoshi, K., Suzuki, T. et al. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of distal radius strength in cadaver material. J Orthop Sci 19, 1012–1018 (2014). https://doi.org/10.1007/s00776-014-0616-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-014-0616-1

Keywords

Navigation