Skip to main content
Log in

Theoretically optimum position of the prosthesis in total hip arthroplasty to fulfill the severe range of motion criteria due to neck impingement

  • Original article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

The purpose of this investigation is to determine the optimum position of the prosthesis in total hip arthroplasty for reducing neck impingement using a mathematical formula.

Methods

We calculated the cup inclination, cup anteversion, and stem antetorsion in cases with various sizes of femoral head (28, 32, 36, and 44 mm in diameter) to fulfill severe range of motion criteria: (1) flexion more than 120°, (2) extension more than 30°, (3) internal rotation at 90° flexion more than 60°, and (4) external rotation at neutral more than 40°.

Results

When the areas to fulfill the severe range of motion criteria were compared by femoral head diameter, the area for 28 mm was extremely small relative to those of 32, 36, and 44 mm. Theoretically, the optimum position of the prosthesis in total hip arthroplasty without neck impingement should be oriented at a cup inclination of 45° combined with the cup anteversion and stem antetorsion so that the sum of the cup anteversion plus 0.7 times the stem antetorsion equals 42° with a head diameter more than 32 mm. This study also recommends the optimum position of the prosthesis as 45° cup inclination, 25° cup anteversion, and 25° stem antetorsion when the surgeon can choose a freely adjustable modular stem system. However, this theory assumes that the pelvic inclination has no changes caused by aging and can be validated in the lying, sitting, and standing positions.

Conclusions

The prosthesis in total hip arthroplasty without neck impingement should be oriented at a cup inclination of 45° combined with cup anteversion and stem antetorsion determined by the formula: cup anteversion + 0.7 × stem antetorsion = 42°. A range of acceptable positions would be more helpful and realistic to a surgeon trying to ensure adequate prosthesis positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gonzalez della Valle A, Ruzo PS, Li S, Pellicci P, Sculco TP, Salvati EA. Dislodgment of polyethylene liners in first and second-generation Harris-Galante acetabular components. A report of eighteen cases. J Bone Joint Surg Am. 2001;83:553–9.

    PubMed  Google Scholar 

  2. Murray DW. Impingement and loosening of the long posterior wall acetabular implant. J Bone Joint Surg Br. 1992;74:337–9.

    Google Scholar 

  3. Kelley SS, Lachiewicz PF, Hickman JM, Paterno SM. Relationship of femoral head and acetabular size to the prevalence of dislocation. Clin Orthop. 1998;355:163–70.

    Article  PubMed  Google Scholar 

  4. D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW Jr. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head–neck ratios. J Bone Joint Surg Am. 2000;82:315–21.

    PubMed  Google Scholar 

  5. Nadzadi ME, Pedersen DR, Yack HJ, Callaghan JJ, Brown TD. Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. J Biomech. 2003;36(5):77–91.

    Google Scholar 

  6. D’Lima DD, Chen PC, Colwell CW Jr. Optimizing acetabular component position to minimize impingement and reduce contact stress. J Bone Joint Surg Am. 2001;83(Suppl 2):87–91.

    PubMed  Google Scholar 

  7. Yoshimine F, Ginbayashi K. A mathematical formula to calculate the theoretical range of motion for total hip replacement. J Biomech. 2002;35:989–93.

    Article  PubMed  Google Scholar 

  8. Yoshimine F. The influence of the oscillation angle and neck anteversion of the prosthesis on the cup safe zone that fulfills the criteria for range of motion in total hip replacements. The required oscillation angle for an acceptable cup safe zone. J Biomech. 2005;38:125–32.

    PubMed  Google Scholar 

  9. Murray DW. The definition and measurement of acetabular orientation. J Bone Joint Surg Br. 1993;75:228–32.

    PubMed  CAS  Google Scholar 

  10. Widmar KH, Zurfluth B. Compliant positioning of total hip components for optimal range of motion. J Orthop Res. 2004;22:815–21.

    Article  Google Scholar 

  11. Robinson RP, Simonian PT, Gradisar IM, Ching RP. Joint motion and surface contact area related to component position in total hip arthroplasty. J Bone Joint Surg Br. 1997;79:140–6.

    Article  PubMed  CAS  Google Scholar 

  12. Yamaguchi M, Akisue T, Bauer TW, Hashimoto Y. The spatial location of impingement in total hip arthroplasty. J Arthroplasty. 2000;15:305–13.

    Article  PubMed  CAS  Google Scholar 

  13. Seki M, Yuasa N, Ohkuni K. Analysis of optimal range of socket orientations in total hip arthroplasty with use of computer-aided design simulation. J Orthop Res. 1998;16:513–7.

    Article  PubMed  CAS  Google Scholar 

  14. Morrey BF. Difficult complications after hip joint replacement. Clin Orthop. 1997;344:179–87.

    PubMed  Google Scholar 

  15. Bartz RL, Nobel PC, Kadakia NR, Tullos HS. The effect of femoral component head size on posterior dislocation of the artificial hip joint. J Bone Joint Surg Am. 2000;82:1300–7.

    PubMed  CAS  Google Scholar 

  16. Johnston RC, Smidt GL. Hip motion measurements for selected activities of daily living. Clin Orthop. 1970;72:205–15.

    PubMed  CAS  Google Scholar 

  17. Kerrigan DC, Lee LW, Collins JL, Riley PO, Lipsitz LA. Reduced hip extension during walking: Healthy elderly and fallers versus young adults. Arch Phys Med Rehabil. 2001;82:26–30.

    Article  PubMed  CAS  Google Scholar 

  18. Suzuki K, Matsubara M, Morita S, Muneta T, Shinomiya K. CT image evaluation of the internal rotation limit prior to bony impingement after total hip arthroplasty. J Orthop Sci. 2002;7:433–8.

    Article  PubMed  Google Scholar 

  19. Krenzel BA, Berend ME, Malinzak RA, Faris PM, Keating M, Meding JB, Ritter MA. High preoperative range of motion is a significant risk factor for dislocation in primary total hip arthroplasty. J Arthroplasty. 2010;25:31–5.

    Article  PubMed  Google Scholar 

  20. Incavo SJ, Thompson MT, Gold JE, Patel RV, Icenogle KD, Noble PC. Which procedure better restores intact hip range of motion: Total hip arthroplasty or resurfacing? A combined cadaveric and computer simulation study. J Arthroplasty 2011 (in press).

  21. Miki H, Yamanashi W, Nishii T, Sato Y, Yoshikawa H. Sugano N 2007 Anatomic hip range of motion after implantation during total hip arthroplasty as measured by a navigation system. J Arthroplasty. 2007;22:946–52.

    Article  PubMed  Google Scholar 

  22. Nadzadi ME, Pedersen DR, Yack HJ, Callaghan JJ, Brown TD. Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. J Biomech. 2003;36:577–91.

    Article  PubMed  Google Scholar 

  23. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60:217–20.

    PubMed  CAS  Google Scholar 

  24. Muller ME. Total hip prosthesis. Clin Orthop. 1970;72:46–68.

    PubMed  CAS  Google Scholar 

  25. Biedermann R, Tonin A, Krismer M, Rachbauer F, Eibl G, Stockl B. Reducing the risk of dislocation after total hip arthroplasty; the effect of orientation of the acetabular component. J Bone Joint Surg Br. 2005;87:762–9.

    Article  PubMed  CAS  Google Scholar 

  26. Ranawat CS, Maynard MJ. Modern technique of cemented total hip arthroplasty. Tech Orthop. 1991;6:17–25.

    Article  Google Scholar 

  27. Jolles BM, Zangger P, Leyvraz PF. Factors predisposing to dislocation after primary total hip arthroplasty. A multivariate analysis. J Arthroplasty. 2002;17:282–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takashi Hisatome or Hideo Doi.

About this article

Cite this article

Hisatome, T., Doi, H. Theoretically optimum position of the prosthesis in total hip arthroplasty to fulfill the severe range of motion criteria due to neck impingement. J Orthop Sci 16, 229–237 (2011). https://doi.org/10.1007/s00776-011-0039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-011-0039-1

Keywords

Navigation