Skip to main content
Log in

Effectiveness of bone marrow transplantation for revitalizing a severely necrotic small bone: experimental rabbit model

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

Although treating Kienböck disease is controversial, we previously applied a new method that was less invasive and comprised drilling, bone marrow (BM) transplantation, external fixation, and radiating low-intensity pulsed ultrasound. We reported good clinical results obtained by this new method, which were comparable to those obtained using other, rather invasive methods. Here, we investigated the effect of drilling holes and transplanting BM into necrotic bone in an animal model to further understand the effect of these methods on the revitalization of necrotic bone.

Methods

We used rabbit fourth tarsal bones, whose surfaces consist of cartilage and cortical bone, mimicking human lunate bone. We soaked the retrieved bones in liquid nitrogen to induce necrosis. After thawing, we inserted them separately into bilateral subcutaneous pouches in the backs of rabbits. A total of 60 rabbits were divided into four groups of 15 rabbits each: BM transplantation (BM group); peripheral blood transplantation (PB group); drilling (D group); control (C group). We sacrificed three rabbits to obtain six specimens in each group at 2, 4, 8, 12, and 20 weeks after operation and evaluated the specimens histomorphologically.

Results

In the BM group, significantly larger mineralizing surfaces, osteoblast surfaces, and osteoclast numbers were observed at 4, 8, and 12 weeks compared with those in the other groups. No significant differences were observed at 2 and 20 weeks in the groups except the mineralizing surface of the 20-week-BM group, which was significantly greater.

Conclusions

We examined the efficacy of drilling and of BM transplantation for regenerating necrotic bone in a rabbit model. Our experiments suggest that drilling with BM transplantation to the necrotic bone accelerates bone formation and remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ueba Y, Nosaka K, Seto Y, Ikeda N, Nakamura T. An operative procedure for advanced Kienböck’s disease: excision of the lunate and subsequent replacement with a tendon-ball implant. J Orthop Sci 1999;4:207–215.

    Article  CAS  PubMed  Google Scholar 

  2. Takase K, Imakiire A. Lunate excision, capitate osteotomy, and intercarpal arthrodesis for advanced Kienböck disease: long-term follow-up. J Bone Joint Surg Am 2001;83:177–183

    Article  PubMed  Google Scholar 

  3. Nakamura R, Tsuge S, Watanabe K, Tsunoda K. Radial wedge osteotomy for Kienböck disease. J Bone Joint Surg Am 1991;73:1391–1396.

    CAS  PubMed  Google Scholar 

  4. Koh S, Nakamura R, Horii E, Nakao E, Inagaki H, Yajima H. Surgical outcome of radial osteotomy for Kienböck’s disease: minimum 10 years of follow-up. J Hand Surg [Am] 2003;28:910–916.

    Article  Google Scholar 

  5. Wollstein R, Watson HK. Scaphotrapeziotrapezoid arthrodesis for arthritis. Hand Clin 2005;21:539–543.

    Article  PubMed  Google Scholar 

  6. Hori Y, Tamai S, Okuda H. Blood vessel transplantation to bone. J Hand Surg [Am] 1979;4:23–33.

    CAS  Google Scholar 

  7. Uchida Y, Sugioka Y. Effects of vascularized bone graft on surrounding necrotic bone: an experimental study. J Reconstr Microsurg 1990;6:101–107.

    Article  CAS  PubMed  Google Scholar 

  8. Mont MA, Ragland PS, Etienne G. Core decompression of the femoral head for osteonecrosis using percutaneous multiple small-diameter drilling. Clin Orthop 2004;429:131–138.

    Article  PubMed  Google Scholar 

  9. Connolly JF. Clinical use of marrow osteoprogenitor cells to stimulate osteogenesis. Clin Orthop 1998;355(suppl):257–266.

    Google Scholar 

  10. Ogawa T, Nishiura Y, Tanaka T, Kyo H, Ochiai N. A new strategy for Kienböck disease and short-term results: bone marrow transfusion, low-intensity pulsed ultrasound (LIPUS), and external fixator combined method. J Jpn Soc Surg Hand 2004;22:807–812 (in Japanese).

    Google Scholar 

  11. Gelberman RH, Gross MS. The vascularity of the wrist: identification of arterial patterns at risk. Clin Orthop 1986;202:40–49.

    PubMed  Google Scholar 

  12. Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop 2002;405:14–23.

    Article  PubMed  Google Scholar 

  13. Gangji V, Hauzeur J P. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells: surgical technique. J Bone Joint Surg Am 2005;87(suppl 1):106–112.

    Article  PubMed  Google Scholar 

  14. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units — report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987;2:595–610.

    Article  CAS  PubMed  Google Scholar 

  15. Recker RR, Kimmel DB, Parfitt AM, Davies KM, Keshawarz N, Hinders S. Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J Bone Miner Res 1988;3:133–144.

    Article  CAS  PubMed  Google Scholar 

  16. Aspenberg P, Wang JS, Jonsson K, Hagert CG. Experimental osteonecrosis of the lunate: revascularization may cause collapse. J Hand Surg [Br] 1994;19:565–569.

    CAS  Google Scholar 

  17. Sunagawa T, Bishop AT, Muramatsu K. Role of conventional and vascularized bone grafts in scaphoid nonunion with avascular necrosis: a canine experimental study. J Hand Surg [Am] 2000;25:849–859.

    Article  CAS  Google Scholar 

  18. Ikeguchi R, Kakinoki R, Aoyama T, Shibata KR, Otsuka S, Fukiage K, et al. Regeneration of osteonecrosis of canine scapholunate using bone marrow stromal cells: possible therapeutic approach for Kienböck disease. Cell Transplant 2006;15:411–422.

    Article  PubMed  Google Scholar 

  19. Malizos KN, Quarles LD, Seaber AV, Rizk WS, Urbaniak JR. An experimental canine model of osteonecrosis: characterization of the repair process. J Orthop Res 1993;11:350–357.

    Article  CAS  PubMed  Google Scholar 

  20. Bernick S, Paule W, Ertl D, Nishimoto SK, Nimni ME. Cellular events associated with the induction of bone by demineralized bone. J Orthop Res 1989;7:1–11.

    Article  CAS  PubMed  Google Scholar 

  21. Lewandrowski KU, Tomford WW, Schomacker KT, Deutsch TF, Mankin HJ. Improved osteoinduction of cortical bone allografts: a study of the effects of laser perforation and partial demineralization. J Orthop Res 1997;15:748–756.

    Article  CAS  PubMed  Google Scholar 

  22. Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 1999;103:1231–1236.

    Article  CAS  PubMed  Google Scholar 

  23. Connolly J, Guse R, Lippiello L, Dehne R. Development of an osteogenic bone-marrow preparation. J Bone Joint Surg Am 1989;71:684–691.

    CAS  PubMed  Google Scholar 

  24. Ohgushi H, Goldberg VM, Caplan AI. Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res 1989;7:568–578.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshioka T, Mishima H, Ohyabu Y, Sakai S, Akaogi H, Ishii T, et al. Repair of large osteochondral defects with allogeneic cartilaginous aggregates formed from bone marrow-derived cells using RWV bioreactor. J Orthop Res 2007;25:1291–1298.

    Article  PubMed  Google Scholar 

  26. Oliver LJ, Rifkin DB, Gabrilove J, Hannocks MJ, Wilson EL. Long-term culture of human bone marrow stromal cells in the presence of basic fibroblast growth factor. Growth Factors 1990;3:231–236.

    Article  CAS  PubMed  Google Scholar 

  27. Wilson EL, Rifkin DB, Kelly F, Hannocks MJ, Gabrilove JL. Basic fibroblast growth factor stimulates myelopoiesis in long-term human bone marrow cultures. Blood 1991;77:954–960.

    CAS  PubMed  Google Scholar 

  28. Brunner G, Nguyen H, Gabrilove J, Rifkin DB, Wilson EL. Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells. Blood 1993;81:631–638.

    CAS  PubMed  Google Scholar 

  29. Watt MF, Hogan LMB. Out of Eden: stem cells and their niches. Science 2000;287:1427–1430.

    Article  CAS  PubMed  Google Scholar 

  30. Enneking WF, Burchardt H, Puhl JJ, Piotrowski G. Physical and biological aspects of repair in dog cortical-bone transplants. J Bone Joint Surg Am 1975;57:237–252.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ogawa, T., Ishii, T., Mishima, H. et al. Effectiveness of bone marrow transplantation for revitalizing a severely necrotic small bone: experimental rabbit model. J Orthop Sci 15, 381–388 (2010). https://doi.org/10.1007/s00776-010-1459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-010-1459-z

Keywords

Navigation