Heat stress facilitates the regeneration of injured skeletal muscle in rats

  • Atsushi Kojima
  • Katsumasa Goto
  • Shigeta Morioka
  • Toshihito Naito
  • Tatsuo Akema
  • Hiroto Fujiya
  • Takao Sugiura
  • Yoshinobu Ohira
  • Moroe Beppu
  • Haruhito Aoki
  • Toshitada Yoshioka
Original article



Skeletal muscle stem cells, so-called muscle satellite cells, are responsible for the repair and the regeneration of adult skeletal muscle tissues. Heat stress can facilitate the proliferation and the differentiation of myoblasts in vitro and can enhance their proliferative potential, which may stimulate the regrowth of atrophied skeletal muscle. The purpose of this study was to investigate the effect of heat stress on the regeneration of skeletal muscle injury induced by cardiotoxin.


Male Wistar rats, aged 7 weeks, were randomly divided into six groups: a nonheated control group that received a physiological saline injection, a group heat stressed before physiological saline injection, a group heat stressed after physiological saline injection, a group injected with cardiotoxin without heat stress, a group heat stressed before cardiotoxin injection, and a group heat stressed after cardiotoxin injection (25 in each group). To initiate muscle injury and regeneration, 0.5 ml of 10 µM cardiotoxin was injected into the left tibialis anterior muscle. Conscious rats in some groups were exposed to environmental heat stress (41°C for 60 min) in a heat chamber 24 h before or immediately after cardiotoxin or physiological saline injection. The heating protocol in the present study causes an increase in the colonic temperature to 41°C. The left tibialis anterior muscles were dissected 1, 3, 7, 14, and 28 days after injection of cardiotoxin or physiological saline.


The wet weight and water content of muscles increased 1 day after cardiotoxin injection regardless of the application of heat stress, but normalized after 7–14 days. The muscle protein content in control rats had increased 7 days after heat stress. Although the muscle protein content decreased on cardiotoxin injection, heat stress caused a significant recovery in protein level. Expression of heat shock protein 72 (HSP72) and the number of Pax7-positive nuclei decreased after cardiotoxin injection but increased on the application of heat stress in both normal control and cardiotoxin-injected groups.


Heat stress stimulated not only the proliferation of satellite cells but also protein synthesis during the regeneration of injured skeletal muscle. It is thus strongly suggested that the heating of injured skeletal muscle may facilitate recovery. There was no direct relationship between the level of HSP72 expression and muscle protein content, suggesting that HSP72 expression may not be the key signal for protein synthesis in the necrosis–regeneration process.


Heat Stress Satellite Cell Tibialis Anterior HSP72 Expression Muscle Satellite Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Seale, P, Rudnicki, MA 2000A new look at the origin, function, and “stem cell” status of muscle satellite cellsDev Biol1811524CrossRefGoogle Scholar
  2. 2.
    Hawke, T, Garry, DJ 2001Myogenic satellite cells: physiology to molecular biologyJ Appl Physiol9153451PubMedGoogle Scholar
  3. 3.
    Saito, Y, Nonaka, I 1994Initiation of satellite cell replication in bupivacaine-induced myonecrosisActa Neuropathol (Berl)882527CrossRefGoogle Scholar
  4. 4.
    Best, TM, Hunter, KD 2000Muscle injury and repairPhys Med Rehabil Clin N Am1125166PubMedGoogle Scholar
  5. 5.
    Bischoff, R 1994The satellite cell and muscle regenerationEngel, AGFranzini-Armstrong, C eds. Myology: basic and clinical2nd edMcGraw-HillNew York97118Google Scholar
  6. 6.
    Grounds, MD 1999Muscle regeneration: molecular aspects and therapeutic implicationsCurr Opin Neurol1253543CrossRefPubMedGoogle Scholar
  7. 7.
    Hirata, A, Masuda, S, Tamura, T, Kai, K, Ojima, K, Fukase, A,  et al. 2003Expression profiling of cytokines and related genes in regenerating skeletal muscle after cardiotoxin injection: a role for osteopontinAm J Pathol16320315PubMedGoogle Scholar
  8. 8.
    Morgan, JE, Partridge, TA 2003Muscle satellite cellsInt J Biochem Cell Biol3511516CrossRefPubMedGoogle Scholar
  9. 9.
    Seale, P, Sabourin, LA, Girgis-Gabardo, A, Mansouri, A, Gruss, P, Rudnicki, MA 2000Pax 7 is required for the specification of myogenic satellite cellsCell10277786CrossRefPubMedGoogle Scholar
  10. 10.
    Naito, H, Powers, SK, Demirel, HA, Sugiura, T, Dodd, SL, Aoki, J 2000Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted ratsJ Appl Physiol8835963PubMedGoogle Scholar
  11. 11.
    Iwaki, K, Chi, SH, Dillmann, WH, Mestril, R 1993Induction of HSP70 in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stressCirculation87202332PubMedGoogle Scholar
  12. 12.
    Xi, L, Tekin, D, Bhargava, P, Kukreja, RC 2001Whole body hyperthermia and preconditioning of the heart: basic concept, complexity, and potential mechanismsInt J Hyperthermia1743955CrossRefPubMedGoogle Scholar
  13. 13.
    Kilgore, JL, Musch, TI, Ross, CR 1988Physical activity, muscle, and the HSP70 responseCan J Appl Physiol2324560Google Scholar
  14. 14.
    Goto, K, Honda, M, Kobayashi, T, Uehara, K, Kojima, A, Akema, T,  et al. 2004Heat stress facilitates the recovery of atrophied soleus muscle in ratsJpn J Physiol5428593CrossRefPubMedGoogle Scholar
  15. 15.
    Kobayashi, T, Uehara, K, Goto, K, Kojima, A, Honda, M, Akema, T,  et al. 2003Muscular hypertrophy is induced by heat stress in rat skeletal musclesSt Marianna Med J311318in JapaneseGoogle Scholar
  16. 16.
    Kobayashi, T, Goto, K, Kojima, A, Akema, T, Uehara, K, Aoki, H,  et al. 2005Possible role of calcineurin in heating-related increase of rat muscle massBiochem Biophys Res Commun33113019CrossRefPubMedGoogle Scholar
  17. 17.
    Uehara, K, Goto, K, Kobayashi, T, Kojima, A, Akema, T, Sugiura, T,  et al. 2004Heat stress enhances proliferative potential in rat soleus muscleJpn J Physiol5426371CrossRefPubMedGoogle Scholar
  18. 18.
    Goto, K, Okuyama, R, Sugiyama, H, Honda, M, Kobayashi, T, Uehara, K,  et al. 2003Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cellsPflugers Arch44724753CrossRefPubMedGoogle Scholar
  19. 19.
    Yamashita-Goto, K, Ohira, Y, Okuyama, R, Sugiyama, H, Honda, M, Sugiura, T,  et al. 2002Heat stress facilitates stretch-induced hypertrophy of cultured muscle cellsJ Gravit Physiol91456Google Scholar
  20. 20.
    Couteaux, R, Mira, JC, d'Albis, A 1988Regeneration of muscles after cardiotoxin injury. I. Cytological aspectsBiol Cell6217182CrossRefPubMedGoogle Scholar
  21. 21.
    Fletcher, JE, Jiang, MS 1993Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittinToxicon3166995CrossRefPubMedGoogle Scholar
  22. 22.
    Asakura, A, Seale, P, Girgis-Gabardo, A, Rudnicki, MA 2002Myogenic specification of side population cells in skeletal muscleJ Cell Biol15912334CrossRefPubMedGoogle Scholar
  23. 23.
    Seale, P, Asakura, A, Rudnicki, MA 2001The potential of muscle stem cellsDev Cell133342CrossRefPubMedGoogle Scholar
  24. 24.
    Laemmli, UK 1970Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature2276805CrossRefPubMedGoogle Scholar
  25. 25.
    Cotto, JJ, Morimoto, RI 1999Stress-induced activation of heat-shock response: cell and molecular biology of heat-shock factorsBiochem Soc Symp6410518PubMedGoogle Scholar
  26. 26.
    Morimoto, RI, Santoro, MG 1998Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotectionNat Biotechnol168338CrossRefPubMedGoogle Scholar
  27. 27.
    Reimann, J, Brimah, K, Schröder, R, Wernig, A, Beauchamp, JR, Partridge, TA 2004Pax7 distribution In human skeletal muscle biopsies and myogenic tissue culturesCell Tissue Res31523342CrossRefPubMedGoogle Scholar
  28. 28.
    Yan, Z, Choi, S, Liu, X, Zhang, M, Schageman, JJ, Lee, SY,  et al. 2003Highly coordinated gene regulation in mouse skeletal muscle regenerationJ Biol Chem278882636CrossRefPubMedGoogle Scholar
  29. 29.
    Oustanina, S, Hause, G, Braun, T 2004Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specificationEMBO J2334309CrossRefPubMedGoogle Scholar
  30. 30.
    Wang, XD, Kawano, F, Matsuoka, Y, Fukunaga, K, Terada, M, Sudoh, M,  et al. 2006Mechanical load-dependent regulation of satellite cell and fiber size in rat soleus muscleAm J Physiol Cell Physiol290C9819CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Orthopaedic Association 2007

Authors and Affiliations

  • Atsushi Kojima
    • 1
    • 2
  • Katsumasa Goto
    • 2
    • 3
  • Shigeta Morioka
    • 1
    • 2
  • Toshihito Naito
    • 1
    • 2
  • Tatsuo Akema
    • 2
  • Hiroto Fujiya
    • 4
  • Takao Sugiura
    • 5
  • Yoshinobu Ohira
    • 6
  • Moroe Beppu
    • 1
  • Haruhito Aoki
    • 1
  • Toshitada Yoshioka
    • 2
    • 7
  1. 1.Department of Orthopaedic SurgerySt. Marianna University School of MedicineMiyamaeJapan
  2. 2.Department of PhysiologySt. Marianna University School of MedicineKawasakiJapan
  3. 3.Laboratory of PhysiologyToyohashi Sozo UniversityToyohashiJapan
  4. 4.Department of Sports MedicineSt. Marianna University School of MedicineKawasakiJapan
  5. 5.Faculty of EducationYamaguchi UniversityYamaguchiJapan
  6. 6.Graduate School of MedicineOsaka UniversityOsakaJapan
  7. 7.Hirosaki Gakuin UniversityHirosakiJapan

Personalised recommendations