Skip to main content
Log in

Surrounded by ligands: the reactivity of cisplatin in cell culture medium

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The reactivity of platinum-containing drugs such as cisplatin, carboplatin, and oxaliplatin is essential for its mechanism of action as an anticancer agent. This inherent reactivity means that molecules in tools used to study these metal-based drugs such as solvents (DMSO), cell culture media, and other buffer additives can ligate to and inactivate or activate them. This Commentary considers these cautionary tales in the context of a new report that cisplatin can also react with penicillin, reiterates best practice in creating Pt drug stock solutions, and highlights the significant work that remains to fully characterize the fate of cisplatin in cell culture media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wang F-X, Prokes I, Song L et al (2022) Reactions of cisplatin and oxaliplatin with penicillin G: implications for drug inactivation and biological activity. J Biol Inorg Chem

  2. Drucker DJ (2016) Never waste a good crisis: confronting reproducibility in translational research. Cell Metab 24:348–360. https://doi.org/10.1016/j.cmet.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  3. Hoeschele JD. (2015) Serendipity and the prepared mind: the discovery of cisplatin. FM Sci 54–70

  4. Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699. https://doi.org/10.1038/205698a0

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg B (1978) Platinum complexes for the treatment of cancer. Interdiscip Sci Rev 3:134–147. https://doi.org/10.1179/030801878791926119

    Article  CAS  Google Scholar 

  6. Roberts RB, Cowie DB, Abelson PH et al (1955) Studies of biosynthesis in Escherichia coli. Carnegie Institution of Washington, Washington

    Google Scholar 

  7. Rosenberg B (1971) Some biological effects of platinum compounds. Platin Met Rev 15:42

    CAS  Google Scholar 

  8. Hambley TW (1997) The influence of structure on the activity and toxicity of Pt anti-cancer drugs. Coord Chem Rev 166:181–223. https://doi.org/10.1016/S0010-8545(97)00023-4

    Article  CAS  Google Scholar 

  9. Kerrison SJS, Sadler PJ (1977) Solvolysis of cis-[Pt(NH3)2Cl2] in dimethyl sulphoxide and reactions of glycine with [PtCl3(Me2SO)]– as probed by 195Pt nuclear magnetic resonance shifts and 195Pt–15N coupling constants. J Chem Soc Chem Commun. https://doi.org/10.1039/C39770000861

    Article  Google Scholar 

  10. Kerrison SJS, Sadler PJ (1985) 195Pt NMR studies of platinum(II) dimethylsuphoxide complexes. Inorganica Chim Acta 104:197–201. https://doi.org/10.1016/S0020-1693(00)86771-7

    Article  CAS  Google Scholar 

  11. Farrell N, Kiley DM, Schmidt W, Hacker MP (1990) Chemical properties and antitumor activity of complexes of platinum containing substituted sulfoxides [PtCl(R’R’’SO)(diamine)]NO3. Chirality and leaving-group ability of sulfoxide affecting biological activity. Inorg Chem 29:397–403. https://doi.org/10.1021/ic00328a011

    Article  CAS  Google Scholar 

  12. Annibale G, Cattalini L, Canovese L et al (1983) Reactivity of sulfoxides toward the tetrachloroplatinate(II) anion. Inorg Chem 22:975–978. https://doi.org/10.1021/ic00148a026

    Article  CAS  Google Scholar 

  13. Lippard SJ Personal communication

  14. Massart C, Le Tellier C, Gibassier J et al (1993) Modulation by dimethyl sulphoxide of the toxicity induced by cis-diamminedichloroplatinum in cultured thyrocytes. Toxicol In Vitro 7:87–94. https://doi.org/10.1016/0887-2333(93)90116-M

    Article  CAS  PubMed  Google Scholar 

  15. Hall MD, Telma KA, Chang K-E et al (2014) Say no to DMSO: dimethylsulfoxide inactivates cisplatin, carboplatin, and other platinum complexes. Cancer Res 74:3913–3922. https://doi.org/10.1158/0008-5472.CAN-14-0247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anthony EJ, Bolitho EM, Bridgewater HE et al (2020) Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 11:12888–12917. https://doi.org/10.1039/D0SC04082G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. (2022) DMEM, high glucose, pyruvate: Technical Resources, ThermoFisher Scientific. https://www.thermofisher.com/us/en/home/technical-resources/media-formulation.9.html

  18. (2022) Media and Supplements in Cell Culture: Millipore Sigma. https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/mammalian-cell-culture/the-cell-environment

  19. Centerwall CR, Kerwood DJ, Goodisman J et al (2008) New extracellular resistance mechanism for cisplatin. J Inorg Biochem 102:1044–1049. https://doi.org/10.1016/j.jinorgbio.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  20. Di Pasqua AJ, Goodisman J, Kerwood DJ et al (2006) Activation of carboplatin by carbonate. Chem Res Toxicol 19:139–149. https://doi.org/10.1021/tx050261s

    Article  CAS  PubMed  Google Scholar 

  21. Sorokanich RS, Di Pasqua AJ, Geier M, Dabrowiak JC (2008) Influence of carbonate on the binding of carboplatin to DNA. Chem Biodivers 5:1540–1544. https://doi.org/10.1002/cbdv.200890142

    Article  CAS  PubMed  Google Scholar 

  22. Di Pasqua AJ, Goodisman J, Kerwood DJ et al (2007) Role of carbonate in the cytotoxicity of carboplatin. Chem Res Toxicol 20:896–904. https://doi.org/10.1021/tx700058f

    Article  CAS  PubMed  Google Scholar 

  23. (1954) Chapter VI: Binding of penicillin to plasma protein. Acta Radiol 41:51–54. https://doi.org/10.3109/00016925409170709

  24. Wang J, Tao J, Jia S et al (2021) The protein-binding behavior of platinum anticancer drugs in blood revealed by mass spectrometry. Pharmaceuticals 14:104. https://doi.org/10.3390/ph14020104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schuldes H, Bade S, Knobloch J, Jonas D (1997) Loss of in vitro cytotoxicity of cisplatin after storage as stock solution in cell culture medium at various temperatures. Cancer 79:1723–1728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MDH is supported by the Intramural Research Program of the National Center for Advancing Translational Science, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Hall.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, M.D. Surrounded by ligands: the reactivity of cisplatin in cell culture medium. J Biol Inorg Chem 27, 691–694 (2022). https://doi.org/10.1007/s00775-022-01970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01970-3

Keywords

Navigation