Skip to main content
Log in

An unprecedented function for a tungsten-containing oxidoreductase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Five tungstopterin-containing oxidoreductases were characterized from the hyperthermophile Pyrococcus furiosus. Each enzyme catalyzes the reversible conversion of one or more aldehydes to the corresponding carboxylic acid, but they have different specificities. The physiological functions of only two of these enzymes are known: one, termed GAPOR, is a glycolytic enzyme that oxidizes glyceraldehyde-3-phosphate, while the other, termed AOR, oxidizes multiple aldehydes generated during peptide fermentation. Two of the enzymes have known structures (AOR and FOR). Herein, we focus on WOR5, the fifth tungstopterin enzyme to be discovered in P. furiosus. Expression of WOR5 was previously shown to be increased during cold shock (growth at 72 ℃), although the physiological substrate is not known. To gain insight into WOR5 function, we sought to determine both its structure and identify its intracellular substrate. Crystallization experiments were performed with a concentrated cytoplasmic extract of P. furiosus grown at 72 ℃ and the structure of WOR5 was deduced from the crystals that were obtained. In contrast to a previous report, WOR5 is heterodimeric containing an additional polyferredoxin-like subunit with four [4Fe–4S] clusters. The active site structure of WOR5 is substantially different from that of AOR and FOR and the significant electron density observed adjacent to the tungsten cofactor of WOR5 was modeled as an aliphatic sulfonate. Biochemical assays and product analysis confirmed that WOR5 is an aliphatic sulfonate ferredoxin oxidoreductase (ASOR). A catalytic mechanism for ASOR is proposed based on the structural information and the potential role of ASOR in the cold-shock response is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The accession number for the atomic coordinates reported in this paper are PDB ID 6X1O and 6X6U for the model obtained from crude extract and the taurine-soaked model of ASOR, respectively.

References

  1. Schicho RN, Snowden LJ, Mukund S, Park JB, Adams MKW (1993) Arch Microbiol 159:380–385

    Article  CAS  Google Scholar 

  2. Schut GJ, Thorgersen MP, Poole FL 2nd, Haja DK, Putumbaka S, Adams MWW (2021) Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2109008118

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mukund S, Adams MW (1995) J Biol Chem 270:8389–8392

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen DMN, Schut GJ, Zadvornyy OA, Tokmina-Lukaszewska M, Poudel S, Lipscomb GL, Adams LA, Dinsmore JT, Nixon WJ, Boyd ES, Bothner B, Peters JW, Adams MWW (2017) J Biol Chem 292:14603–14616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mukund S, Adams MW (1991) J Biol Chem 266:14208–14216

    Article  CAS  PubMed  Google Scholar 

  6. Roy R, Mukund S, Schut GJ, Dunn DM, Weiss R, Adams MW (1999) J Bacteriol 181:1171–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roy R, Adams MW (2002) J Bacteriol 184:6952–6956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan MK, Mukund S, Kletzin A, Adams MW, Rees DC (1995) Science 267:1463–1469

    Article  CAS  PubMed  Google Scholar 

  9. Hu Y, Faham S, Roy R, Adams MW, Rees DC (1999) J Mol Biol 286:899–914

    Article  CAS  PubMed  Google Scholar 

  10. Weinberg MV, Schut GJ, Brehm S, Datta S, Adams MW (2005) J Bacteriol 187:336–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bevers LE, Bol E, Hagedoorn PL, Hagen WR (2005) J Bacteriol 187:7056–7061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berks BC, Page MD, Richardson DJ, Reilly A, Cavill A, Outen F, Ferguson SJ (1995) Mol Microbiol 15:319–331

    Article  CAS  PubMed  Google Scholar 

  13. Jormakka M, Yokoyama K, Yano T, Tamakoshi M, Akimoto S, Shimamura T, Curmi P, Iwata S (2008) Nat Struct Mol Biol 15:730–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scott IM, Rubinstein GM, Poole FL 2nd, Lipscomb GL, Schut GJ, Williams-Rhaesa AM, Stevenson DM, Amador-Noguez D, Kelly RM, Adams MWW (2019) J Biol Chem 294:9995–10005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gray HB, Winkler JR (2010) Biochim Biophys Acta 1797:1563–1572

    Article  CAS  PubMed  Google Scholar 

  16. Winkler JR, Gray HB (2014) Chem Rev 114:3369–3380

    Article  CAS  PubMed  Google Scholar 

  17. Brereton PS, Duderstadt RE, Staples CR, Johnson MK, Adams MW (1999) Biochemistry 38:10594–10605

    Article  CAS  PubMed  Google Scholar 

  18. Schindelin H, Kisker C, Rees DC (1997) J Biol Inorg Chem 2:773–781

    Article  CAS  Google Scholar 

  19. Clifford EL, Hansell DA, Varela MM, Nieto-Cid M, Herndl GJ, Sintes E (2017) Limnol Oceanogr 62:2745–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Esteves AM, Chandrayan SK, McTernan PM, Borges N, Adams MW, Santos H (2014) Appl Environ Microbiol 80:4226–4233

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lambert IH (2004) Neurochem Res 29:27–63

    Article  CAS  PubMed  Google Scholar 

  22. Peck SC, Denger K, Burrichter A, Irwin SM, Balskus EP, Schleheck D (2019) Proc Natl Acad Sci U S A 116:3171–3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dawson CD, Irwin SM, Backman LRF, Le C, Wang JX, Vennelakanti V, Yang Z, Kulik HJ, Drennan CL, Balskus EP (2021) Cell Chem Biol 28(1333–1346):e1337

    Google Scholar 

  24. van Severen MC, Andrejic M, Li J, Starke K, Mata RA, Nordlander E, Ryde U (2014) J Biol Inorg Chem 19:1165–1179

    Article  PubMed  Google Scholar 

  25. Caldararu O, Feldt M, Cioloboc D, van Severen MC, Starke K, Mata RA, Nordlander E, Ryde U (2018) Sci Rep 8:4684

    Article  PubMed  PubMed Central  Google Scholar 

  26. A. F. Arendsen, M. deVocht, Y. B. M. Bulsink and W. R. Hagen (1996) J Biol Inorg Chem 1:292–296

  27. Bas DC, Rogers DM, Jensen JH (2008) Proteins 73:765–783

    Article  CAS  PubMed  Google Scholar 

  28. Liao RZ, Yu JG, Himo F (2011) J Inorg Biochem 105:927–936

    Article  CAS  PubMed  Google Scholar 

  29. Tong IT, Liao HH, Cameron DC (1991) Appl Environ Microbiol 57:3541–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE Jr, Scott RA, Adams MW, Westpheling J (2011) Appl Environ Microbiol 77:2232–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bryksin AV, Matsumura I (2010) Biotechniques 48:463–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu CH, Ponir CA, Haja DK, Adams MWW (2018) Protein Eng Des Sel 31:337–344

    Article  CAS  PubMed  Google Scholar 

  33. Chandrayan SK, McTernan PM, Hopkins RC, Sun J, Jenney FE Jr, Adams MW (2012) J Biol Chem 287:3257–3264

    Article  CAS  PubMed  Google Scholar 

  34. Chandrayan SK, Wu CH, McTernan PM, Adams MW (2015) Protein Expr Purif 107:90–94

    Article  CAS  PubMed  Google Scholar 

  35. Verhagen MF, Menon AL, Schut GJ, Adams MW (2001) Methods Enzymol 330:25–30

    Article  CAS  PubMed  Google Scholar 

  36. Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  37. Emsley P, Debreczeni JE (2012) Methods Mol Biol 841:143–159

    Article  CAS  PubMed  Google Scholar 

  38. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the technical support of the Proteomics and Mass Spectrometry Facility at the University of Georgia for acquisition and interpretation of their mass spectrometry data. This work was supported in part by grants (GM124203 to WNL and GM136885 to MWWA) from the National Institutes of Health General Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

WNL and MWWA: conceived and designed experiments. LGM: performed cell growths, enzyme purification, crystallography and enzymology. CP: performed crystal screening. LSF and MER: performed the NMR and negative ion mass spectrometry. DKH and WM: prepared the WOR5 overexpression strain and performed cell growths. WNL and MWWA: analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Michael W. W. Adams or William N. Lanzilotta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5799 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, L.G., Haja, D.K., Pritchett, C. et al. An unprecedented function for a tungsten-containing oxidoreductase. J Biol Inorg Chem 27, 747–758 (2022). https://doi.org/10.1007/s00775-022-01965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01965-0

Keywords

Navigation