Skip to main content

Morphological difference of Escherichia coli non-heme ferritin iron cores reconstituted in the presence and absence of inorganic phosphate

Abstract

The iron core of Escherichia coli ferritin was reconstituted in the presence and absence of phosphate. The core formed in the presence of phosphate contained phosphate in amounts comparable to the iron content. The size distribution of the core was analyzed by analytical ultracentrifugation. A continuous size distribution was observed in the presence of phosphate, whereas a multimodal distribution was found in the absence of phosphate. In the presence of phosphate, the core size observed by electron microscopy was consistent with the inner diameter of ferritin. In contrast to this, clusters of several smaller particles were observed in the absence of phosphate. The small-angle X-ray scattering was measured under contrast matching conditions to obtain information on the iron core shape. A fringe was observed in the scattering profile in the presence of phosphate, but it was not observed in the absence of phosphate. Combining all results, we conclude that a hollow spherical core was formed in the presence of phosphate, while several small particles were formed within the inner cavity in the absence of phosphate.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

AUC:

Analytical ultracentrifugation

CBB:

Coomassie brilliant blue

HEPES:

2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

ICP:

Inductively coupled plasma

MES:

2-(N-morpholino)ethanesulfonic acid

PAGE:

Polyacrylamide gel electrophoresis

PVDF:

Poly-vinylidene difluoride

SAXS:

Small-angle X-ray scattering

SDS:

Sodium dodecyl sulfate

TEM:

Transmission electron microscopy

UV:

Ultraviolet

References

  1. Koppenol WH, Hider RH (2019) Free Radic Biol Med 133:3–10

    Article  CAS  PubMed  Google Scholar 

  2. Harrison PM, Arosio P (1996) Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  3. Crichton RR, Declercq JP (2010) Biochim Biophys Acta 1800:706–718

    Article  CAS  PubMed  Google Scholar 

  4. Mehlenbacher M, Poli M, Arosio P, Santambrogio P, Levi S, Chasteen ND, Bou-Abdallah F (2017) Biochemistry 56:3900–3912

    Article  CAS  PubMed  Google Scholar 

  5. Ciambellotti S, Pozzi C, Mangani S, Turano P (2020) Chem Eur J 26:5770–5773

    Article  CAS  PubMed  Google Scholar 

  6. Massai L, Ciambellotti S, Cosottini L, Messori L, Turano P, Pratesi A (2021) Dalton Trans 50:16464–16467

    Article  CAS  PubMed  Google Scholar 

  7. Arosio P, Levi S (2010) Biochim Biophys Acta 1800:783–792

    Article  CAS  PubMed  Google Scholar 

  8. Ciambellotti S, Pratesi A, Tassone G, Turano P, Mangani S, Pozzi C (2021) Chem Eur J 27:14690–14701

    Article  CAS  PubMed  Google Scholar 

  9. Le Brun NE, Crow A, Murphy ME, Mauk AG, Moore GR (2010) Biochim Biophys Acta 1800:732–744

    Article  PubMed  CAS  Google Scholar 

  10. Pullin J, Wilson MT, Clémancey M, Blondin G, Bradley JM, Moore GR, Le Brun NE, Lučić M, Worrall JAR, Svistunenko DA (2021) Angew Chem Int Ed Engl 60:8361–8369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fischbach FA, Anderegg JW (1965) J Mol Biol 14:458–473

    Article  CAS  PubMed  Google Scholar 

  12. Haggis GH (1965) J Mol Biol 14:598–602

    Article  CAS  PubMed  Google Scholar 

  13. De Silva D, Guo JH, Aust SD (1993) Arch Biochem Biophys 303:451–455

    Article  PubMed  Google Scholar 

  14. Chasteen ND, Harrison PM (1999) J Struct Biol 126:182–194

    Article  CAS  PubMed  Google Scholar 

  15. Treffry A, Harrison PM, Cleton MI, de Bruijn WC, Mann S (1987) J Inorg Biochem 31:1–6

    Article  CAS  PubMed  Google Scholar 

  16. Rohrer JS, Islam QT, Watt GD, Sayers DE, Theil EC (1990) Biochemistry 29:259–264

    Article  CAS  PubMed  Google Scholar 

  17. Wade VJ, Treffry A, Laulhere JP, Bauminger ER, Cleton MI, Mann S, Briat JF, Harrison PM (1993) Biochim Biophys Acta 1161:91–96

    Article  CAS  PubMed  Google Scholar 

  18. Pierre TG, Kim KS, Webb J, Mann S, Dickson DPE (1990) Inorg Chem 29:1870–1874

    Article  Google Scholar 

  19. Andrews SC, Brady MC, Treffry A, Williams JM, Mann S, Cleton MI, de Bruijn W, Harrison PM (1988) Biol Met 1:33–42

    Article  CAS  PubMed  Google Scholar 

  20. Mann S, Williams JM, Treffry A, Harrison PM (1987) J Mol Biol 198:405–416

    Article  CAS  PubMed  Google Scholar 

  21. Watt GD, Frankel RB, Jacobs D, Huang H, Papaefthymiou GC (1992) Biochemistry 31:5672–5679

    Article  CAS  PubMed  Google Scholar 

  22. Aitken-Rogers H, Singleton C, Lewin A, Taylor-Gee A, Moore GR, Le Brun NE (2004) J Biol Inorg Chem 9:161–170

    Article  CAS  PubMed  Google Scholar 

  23. Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR (2013) FEBS Lett 587:220–225

    Article  CAS  PubMed  Google Scholar 

  24. Parida A, Mohanty A, Kansara BT, Behera RK (2020) Inorg Chem 59:629–641

    Article  CAS  PubMed  Google Scholar 

  25. Li C, Qi X, Li M, Zhao G, Hu X (2009) Biochimie 91:1475–1481

    Article  CAS  PubMed  Google Scholar 

  26. Treffry A, Harrison PM (1978) Biochem J 171:313–320

    Article  CAS  Google Scholar 

  27. Cheng YG, Chasteen ND (1991) Biochemistry 30:2947–2953

    Article  CAS  PubMed  Google Scholar 

  28. Johnson JL, Cannon M, Watt RK, Frankel RB, Watt GD (1999) Biochemistry 38:6706–6713

    Article  CAS  PubMed  Google Scholar 

  29. Narayanan S, Shahbazian-Yassar R, Shokuhfar T (2019) J Phys D: Appl Phys 52:453001

    Article  CAS  Google Scholar 

  30. Pan YH, Sader K, Powell JJ, Bleloch A, Gass M, Trinick J, Warley A, Li A, Brydson R, Brown A (2009) J Struct Biol 166:22–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Levi S, Santambrogio P, Corsi B, Cozzi A, Arosio P (1996) Biochem J 317(Pt 2):467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lopez-Castro JD, Delgado JJ, Perez-Omil JA, Galvez N, Cuesta R, Watt RK, Dominguez-Vera JM (2012) Dalton Trans 41:1320–1324

    Article  CAS  PubMed  Google Scholar 

  33. Santambrogio P, Levi S, Cozzi A, Corsi B, Arosio P (1996) Biochem J 314(Pt 1):139–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Narayanan S, Shahbazian-Yassar R, Shokuhfar T (2020) ACS Biomater Sci Eng 6:3208–3216

    Article  CAS  PubMed  Google Scholar 

  35. Ohtomo H, Ohtomo M, Sato D, Kurobe A, Sunato A, Matsumura Y, Kihara H, Fujiwara K, Ikeguchi M (2015) Biochemistry 54:6243–6251

    Article  CAS  PubMed  Google Scholar 

  36. Sato D, Ohtomo H, Yamada Y, Hikima T, Kurobe A, Fujiwara K, Ikeguchi M (2016) Biochemistry 55:287–293

    Article  CAS  PubMed  Google Scholar 

  37. Hilton RJ, David Andros N, Watt RK (2012) Biometals 25:259–273

    Article  CAS  PubMed  Google Scholar 

  38. Schuck P (2000) Biophys J 78:1606–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992). In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. Royal Society of Chemistry, Cambridge, pp 90–125

    Google Scholar 

  40. May CA, Grady JK, Laue TM, Poli M, Arosio P, Chasteen ND (2010) Biochim Biophys Acta 1800:858–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang TC, Toraya H, Blanton TN, Wu Y (1993) J Appl Crystallogr 26:180–184

    Article  CAS  Google Scholar 

  42. Shimizu N, Yatabe K, Nagatani Y, Saijyo S, Kosuge T, Igarashi N (2016) AIP Conf Proc 1741:050017

    Article  Google Scholar 

  43. Glatter O, Kratky O (1982) Small angle x-ray scattering. Academic Press, London

    Google Scholar 

  44. Svergun DI (1992) J Appl Crystallogr 25:495–503

    Article  CAS  Google Scholar 

  45. Hudson AJ, Andrews SC, Hawkins C, Williams JM, Izuhara M, Meldrum FC, Mann S, Harrison PM, Guest JR (1993) Eur J Biochem 218:985–995

    Article  CAS  PubMed  Google Scholar 

  46. Schneider CA, Rasband WS, Eliceiri KW (2012) Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stillman TJ, Hempstead PD, Artymiuk PJ, Andrews SC, Hudson AJ, Treffry A, Guest JR, Harrison PM (2001) J Mol Biol 307:587–603

    Article  CAS  PubMed  Google Scholar 

  48. Koralewski M, Balejčíková L, Mitróová Z, Pochylski M, Baranowski M, Kopčanský P (2018) ACS Appl Mater Interfaces 10:7777–7787

    Article  CAS  PubMed  Google Scholar 

  49. Williams MA, Harrison PM (1968) Biochem J 110:265–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang D, Matsubara K, Yamaki M, Ebina S, Nagayama K (1994) Biochim Biophys Acta 1206:173–179

    Article  CAS  PubMed  Google Scholar 

  51. Gálvez N, Fernández B, Sánchez P, Cuesta R, Ceolín M, Clemente-León M, Trasobares S, López-Haro M, Calvino JJ, Stéphan O, Domínguez-Vera JM (2008) J Am Chem Soc 130:8062–8068

    Article  PubMed  CAS  Google Scholar 

  52. Wong SG, Grigg JC, Le Brun NE, Moore GR, Murphy MEP, Mauk AG (2015) J Biol Chem 290:3732–3739

    Article  CAS  PubMed  Google Scholar 

  53. Hempstead PD, Hudson AJ, Artymiuk PJ, Andrews SC, Banfield MJ, Guest JR, Harrison PM (1994) FEBS Lett 350:258–262

    Article  CAS  PubMed  Google Scholar 

  54. Masuda T, Goto F, Yoshihara T, Mikami B (2010) Biochem Biophys Research Commun 400:94–99

    Article  CAS  Google Scholar 

  55. Masuda T, Goto F, Yoshihara T, Mikami B (2010) J Biol Chem 285:4049–4059

    Article  CAS  PubMed  Google Scholar 

  56. Zhao G, Bou-Abdallah F, Arosio P, Levi S, Janus-Chandler C, Chasteen ND (2003) Biochemistry 42:3142–3150

    Article  CAS  PubMed  Google Scholar 

  57. Treffry A, Zhao Z, Quail MA, Guest JR, Harrison PM (1998) FEBS Lett 432:213–218

    Article  CAS  PubMed  Google Scholar 

  58. Bauminger ER, Treffry A, Quail MA, Zhao Z, Nowik I, Harrison PM (1999) Biochemistry 38:7791–7802

    Article  CAS  PubMed  Google Scholar 

  59. Bou-Abdallah F, Yang H, Awomolo A, Cooper B, Woodhall MR, Andrews SC, Chasteen ND (2014) Biochemistry 53:483–495

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The synchrotron radiation SAXS experiments were performed at BL6A or BL10C of Photon Factory (Tsukuba, Japan) under the approval of the Photon Factory Program Advisory Committee (Proposal Nos. 2017G069, 2019G073, and 2021G089).

Funding

This work was supported in part by the Sasakawa Scientific Research Grant from The Japan Science Society to TK and JSPS KAKENHI Grant No. 21K06116 to MI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Ikeguchi.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4189 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwata, T., Sato, D., Yanagida, Y. et al. Morphological difference of Escherichia coli non-heme ferritin iron cores reconstituted in the presence and absence of inorganic phosphate. J Biol Inorg Chem 27, 583–594 (2022). https://doi.org/10.1007/s00775-022-01952-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01952-5

Keywords