Abstract
The iron core of Escherichia coli ferritin was reconstituted in the presence and absence of phosphate. The core formed in the presence of phosphate contained phosphate in amounts comparable to the iron content. The size distribution of the core was analyzed by analytical ultracentrifugation. A continuous size distribution was observed in the presence of phosphate, whereas a multimodal distribution was found in the absence of phosphate. In the presence of phosphate, the core size observed by electron microscopy was consistent with the inner diameter of ferritin. In contrast to this, clusters of several smaller particles were observed in the absence of phosphate. The small-angle X-ray scattering was measured under contrast matching conditions to obtain information on the iron core shape. A fringe was observed in the scattering profile in the presence of phosphate, but it was not observed in the absence of phosphate. Combining all results, we conclude that a hollow spherical core was formed in the presence of phosphate, while several small particles were formed within the inner cavity in the absence of phosphate.
Graphical abstract

This is a preview of subscription content, access via your institution.






Abbreviations
- AUC:
-
Analytical ultracentrifugation
- CBB:
-
Coomassie brilliant blue
- HEPES:
-
2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic acid
- ICP:
-
Inductively coupled plasma
- MES:
-
2-(N-morpholino)ethanesulfonic acid
- PAGE:
-
Polyacrylamide gel electrophoresis
- PVDF:
-
Poly-vinylidene difluoride
- SAXS:
-
Small-angle X-ray scattering
- SDS:
-
Sodium dodecyl sulfate
- TEM:
-
Transmission electron microscopy
- UV:
-
Ultraviolet
References
Koppenol WH, Hider RH (2019) Free Radic Biol Med 133:3–10
Harrison PM, Arosio P (1996) Biochim Biophys Acta 1275:161–203
Crichton RR, Declercq JP (2010) Biochim Biophys Acta 1800:706–718
Mehlenbacher M, Poli M, Arosio P, Santambrogio P, Levi S, Chasteen ND, Bou-Abdallah F (2017) Biochemistry 56:3900–3912
Ciambellotti S, Pozzi C, Mangani S, Turano P (2020) Chem Eur J 26:5770–5773
Massai L, Ciambellotti S, Cosottini L, Messori L, Turano P, Pratesi A (2021) Dalton Trans 50:16464–16467
Arosio P, Levi S (2010) Biochim Biophys Acta 1800:783–792
Ciambellotti S, Pratesi A, Tassone G, Turano P, Mangani S, Pozzi C (2021) Chem Eur J 27:14690–14701
Le Brun NE, Crow A, Murphy ME, Mauk AG, Moore GR (2010) Biochim Biophys Acta 1800:732–744
Pullin J, Wilson MT, Clémancey M, Blondin G, Bradley JM, Moore GR, Le Brun NE, Lučić M, Worrall JAR, Svistunenko DA (2021) Angew Chem Int Ed Engl 60:8361–8369
Fischbach FA, Anderegg JW (1965) J Mol Biol 14:458–473
Haggis GH (1965) J Mol Biol 14:598–602
De Silva D, Guo JH, Aust SD (1993) Arch Biochem Biophys 303:451–455
Chasteen ND, Harrison PM (1999) J Struct Biol 126:182–194
Treffry A, Harrison PM, Cleton MI, de Bruijn WC, Mann S (1987) J Inorg Biochem 31:1–6
Rohrer JS, Islam QT, Watt GD, Sayers DE, Theil EC (1990) Biochemistry 29:259–264
Wade VJ, Treffry A, Laulhere JP, Bauminger ER, Cleton MI, Mann S, Briat JF, Harrison PM (1993) Biochim Biophys Acta 1161:91–96
Pierre TG, Kim KS, Webb J, Mann S, Dickson DPE (1990) Inorg Chem 29:1870–1874
Andrews SC, Brady MC, Treffry A, Williams JM, Mann S, Cleton MI, de Bruijn W, Harrison PM (1988) Biol Met 1:33–42
Mann S, Williams JM, Treffry A, Harrison PM (1987) J Mol Biol 198:405–416
Watt GD, Frankel RB, Jacobs D, Huang H, Papaefthymiou GC (1992) Biochemistry 31:5672–5679
Aitken-Rogers H, Singleton C, Lewin A, Taylor-Gee A, Moore GR, Le Brun NE (2004) J Biol Inorg Chem 9:161–170
Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR (2013) FEBS Lett 587:220–225
Parida A, Mohanty A, Kansara BT, Behera RK (2020) Inorg Chem 59:629–641
Li C, Qi X, Li M, Zhao G, Hu X (2009) Biochimie 91:1475–1481
Treffry A, Harrison PM (1978) Biochem J 171:313–320
Cheng YG, Chasteen ND (1991) Biochemistry 30:2947–2953
Johnson JL, Cannon M, Watt RK, Frankel RB, Watt GD (1999) Biochemistry 38:6706–6713
Narayanan S, Shahbazian-Yassar R, Shokuhfar T (2019) J Phys D: Appl Phys 52:453001
Pan YH, Sader K, Powell JJ, Bleloch A, Gass M, Trinick J, Warley A, Li A, Brydson R, Brown A (2009) J Struct Biol 166:22–31
Levi S, Santambrogio P, Corsi B, Cozzi A, Arosio P (1996) Biochem J 317(Pt 2):467–473
Lopez-Castro JD, Delgado JJ, Perez-Omil JA, Galvez N, Cuesta R, Watt RK, Dominguez-Vera JM (2012) Dalton Trans 41:1320–1324
Santambrogio P, Levi S, Cozzi A, Corsi B, Arosio P (1996) Biochem J 314(Pt 1):139–144
Narayanan S, Shahbazian-Yassar R, Shokuhfar T (2020) ACS Biomater Sci Eng 6:3208–3216
Ohtomo H, Ohtomo M, Sato D, Kurobe A, Sunato A, Matsumura Y, Kihara H, Fujiwara K, Ikeguchi M (2015) Biochemistry 54:6243–6251
Sato D, Ohtomo H, Yamada Y, Hikima T, Kurobe A, Fujiwara K, Ikeguchi M (2016) Biochemistry 55:287–293
Hilton RJ, David Andros N, Watt RK (2012) Biometals 25:259–273
Schuck P (2000) Biophys J 78:1606–1619
Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992). In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. Royal Society of Chemistry, Cambridge, pp 90–125
May CA, Grady JK, Laue TM, Poli M, Arosio P, Chasteen ND (2010) Biochim Biophys Acta 1800:858–870
Huang TC, Toraya H, Blanton TN, Wu Y (1993) J Appl Crystallogr 26:180–184
Shimizu N, Yatabe K, Nagatani Y, Saijyo S, Kosuge T, Igarashi N (2016) AIP Conf Proc 1741:050017
Glatter O, Kratky O (1982) Small angle x-ray scattering. Academic Press, London
Svergun DI (1992) J Appl Crystallogr 25:495–503
Hudson AJ, Andrews SC, Hawkins C, Williams JM, Izuhara M, Meldrum FC, Mann S, Harrison PM, Guest JR (1993) Eur J Biochem 218:985–995
Schneider CA, Rasband WS, Eliceiri KW (2012) Nat Methods 9:671–675
Stillman TJ, Hempstead PD, Artymiuk PJ, Andrews SC, Hudson AJ, Treffry A, Guest JR, Harrison PM (2001) J Mol Biol 307:587–603
Koralewski M, Balejčíková L, Mitróová Z, Pochylski M, Baranowski M, Kopčanský P (2018) ACS Appl Mater Interfaces 10:7777–7787
Williams MA, Harrison PM (1968) Biochem J 110:265–280
Yang D, Matsubara K, Yamaki M, Ebina S, Nagayama K (1994) Biochim Biophys Acta 1206:173–179
Gálvez N, Fernández B, Sánchez P, Cuesta R, Ceolín M, Clemente-León M, Trasobares S, López-Haro M, Calvino JJ, Stéphan O, Domínguez-Vera JM (2008) J Am Chem Soc 130:8062–8068
Wong SG, Grigg JC, Le Brun NE, Moore GR, Murphy MEP, Mauk AG (2015) J Biol Chem 290:3732–3739
Hempstead PD, Hudson AJ, Artymiuk PJ, Andrews SC, Banfield MJ, Guest JR, Harrison PM (1994) FEBS Lett 350:258–262
Masuda T, Goto F, Yoshihara T, Mikami B (2010) Biochem Biophys Research Commun 400:94–99
Masuda T, Goto F, Yoshihara T, Mikami B (2010) J Biol Chem 285:4049–4059
Zhao G, Bou-Abdallah F, Arosio P, Levi S, Janus-Chandler C, Chasteen ND (2003) Biochemistry 42:3142–3150
Treffry A, Zhao Z, Quail MA, Guest JR, Harrison PM (1998) FEBS Lett 432:213–218
Bauminger ER, Treffry A, Quail MA, Zhao Z, Nowik I, Harrison PM (1999) Biochemistry 38:7791–7802
Bou-Abdallah F, Yang H, Awomolo A, Cooper B, Woodhall MR, Andrews SC, Chasteen ND (2014) Biochemistry 53:483–495
Acknowledgements
The synchrotron radiation SAXS experiments were performed at BL6A or BL10C of Photon Factory (Tsukuba, Japan) under the approval of the Photon Factory Program Advisory Committee (Proposal Nos. 2017G069, 2019G073, and 2021G089).
Funding
This work was supported in part by the Sasakawa Scientific Research Grant from The Japan Science Society to TK and JSPS KAKENHI Grant No. 21K06116 to MI.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interest
The authors declare no competing financial interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kuwata, T., Sato, D., Yanagida, Y. et al. Morphological difference of Escherichia coli non-heme ferritin iron cores reconstituted in the presence and absence of inorganic phosphate. J Biol Inorg Chem 27, 583–594 (2022). https://doi.org/10.1007/s00775-022-01952-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00775-022-01952-5