Skip to main content
Log in

Enhanced antitumor effect of l-buthionine sulfoximine or ionizing radiation by copper complexes with 2,2´-biquinoline and sulfonamides on A549 2D and 3D lung cancer cell models

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two ternary copper(II) complexes with 2,2′-biquinoline (BQ) and with sulfonamides: sulfamethazine (SMT) or sulfaquinoxaline (SDQ) whose formulae are Cu(SMT)(BQ)Cl and Cu(SDQ)(BQ)Cl·CH3OH, in what follows SMTCu and SDQCu, respectively, induced oxidative stress by increasing ROS level from 1.0 μM and the reduction potential of the couple GSSG/GSH2. The co-treatment with l-buthionine sulfoximine (BSO), which inhibits the production of GSH, enhanced the effect of copper complexes on tumor cell viability and on oxidative damage. Both complexes generated DNA strand breaks given by—at least partially—the oxidation of pyrimidine bases, which caused the arrest of the cell cycle in the G2/M phase. These phenomena triggered processes of apoptosis proven by activation of caspase 3 and externalization of phosphatidylserine and loss of cell integrity from 1.0 μM. The combination with BSO induced a marked increase in the apoptotic population. On the other hand, an improved cell proliferation effect was observed when combining SDQCu with a radiation dose of 2 Gy from 1.0 μM or with 6 Gy from 1.5 μM. Finally, studies in multicellular spheroids demonstrated that even though copper(II) complexes did not inhibit cell invasion in collagen gels up to 48 h of treatment at the higher concentrations, multicellular resistance outperformed several drugs currently used in cancer treatment. Overall, our results reveal an antitumor effect of both complexes in monolayer and multicellular spheroids and an improvement with the addition of BSO. However, only SDQCu was the best adjuvant of ionizing radiation treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ferlay J, Shin H-R, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917. https://doi.org/10.1002/ijc.25516

    Article  CAS  PubMed  Google Scholar 

  2. Fitzmaurice C, Allen C, Barber RM et al (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015. JAMA Oncol 3:524. https://doi.org/10.1001/jamaoncol.2016.5688

    Article  PubMed  Google Scholar 

  3. Gupte A, Mumper RJ (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 35:32–46. https://doi.org/10.1016/j.ctrv.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  4. Barton MB, Frommer M, Shafiq J (2006) Role of radiotherapy in cancer control in low-income and middle-income countries. Lancet Oncol 7:584–595. https://doi.org/10.1016/S1470-2045(06)70759-8

    Article  PubMed  Google Scholar 

  5. Tyldesley S, Delaney G, Foroudi F et al (2011) Estimating the need for radiotherapy for patients with prostate, breast, and lung cancers: Verification of model estimates of need with radiotherapy utilization data from British Columbia. Int J Radiat Oncol Biol Phys 79:1507–1515. https://doi.org/10.1016/j.ijrobp.2009.12.070

    Article  PubMed  Google Scholar 

  6. Faenov A, Pikuz T, Kodama R (2016) Laser-driven particle acceleration towards radiobiology and medicine. 271–294. https://doi.org/10.1007/978-3-319-31563-8

  7. Hancock CN, Stockwin LH, Han B et al (2011) A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radic Biol Med 50:110–121. https://doi.org/10.1016/j.freeradbiomed.2010.10.696

    Article  CAS  PubMed  Google Scholar 

  8. Bolos CA, Chaviara AT, Mourelatos D et al (2009) Synthesis, characterization, toxicity, cytogenetic and in vivo antitumor studies of 1,1-dithiolate Cu(II) complexes with di-, tri-, tetra- amines and 1,3-thiazoles. Structure-activity correlation. Bioorg Med Chem 17:3142–3151. https://doi.org/10.1016/j.bmc.2009.02.059

    Article  CAS  PubMed  Google Scholar 

  9. Carvallo-Chaigneau F, Trejo-Solís C, Gómez-Ruiz C et al (2008) Casiopeina III-ia induces apoptosis in HCT-15 cells in vitro through caspase-dependent mechanisms and has antitumor effect in vivo. Biometals 21:17–28. https://doi.org/10.1007/s10534-007-9089-4

    Article  CAS  PubMed  Google Scholar 

  10. Wolohan P, Yoo J, Welch MJ, Reichert DE (2005) QSAR studies of copper azamacrocycles and thiosemicarbazones: MM3 parameter development and prediction of biological properties. J Med Chem 48:5561–5569. https://doi.org/10.1021/jm0501376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang H, Thomas R, Oupicky D, Peng F (2008) Synthesis and characterization of new copper thiosemicarbazone complexes with an ONNS quadridentate system: cell growth inhibition, S-phase cell cycle arrest and proapoptotic activities on cisplatin-resistant neuroblastoma cells. J Biol Inorg Chem 13:47–55. https://doi.org/10.1007/s00775-007-0299-6

    Article  CAS  PubMed  Google Scholar 

  12. Arjmand F, Muddassir M (2011) A mechanistic approach for the DNA binding of chiral enantiomeric l- and d-tryptophan-derived metal complexes of 1,2-DACH: cleavage and antitumor activity. Chirality 23:250–259. https://doi.org/10.1002/chir.20907

    Article  CAS  PubMed  Google Scholar 

  13. Buchtík R, Trávníček Z, Vančo J et al (2011) Synthesis, characterization, DNA interaction and cleavage, and in vitro cytotoxicity of copper(ii) mixed-ligand complexes with 2-phenyl-3-hydroxy-4(1H)-quinolinone. Dalt Trans 40:9404. https://doi.org/10.1039/c1dt10674k

    Article  CAS  Google Scholar 

  14. Koppenol WH (2001) The Haber-Weiss cycle–70 years later. Redox Rep 6:229–234. https://doi.org/10.1179/135100001101536373

    Article  CAS  PubMed  Google Scholar 

  15. Fleming AM, Muller JG, Ji I, Burrows CJ (2011) Characterization of 2’-deoxyguanosine oxidation products observed in the Fenton-like system Cu(II)/H2O2/reductant in nucleoside and oligodeoxynucleotide contexts. Org Biomol Chem 9:3338–3348. https://doi.org/10.1039/c1ob05112a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berneis K, Kofler M, Bollag W et al (1963) The degradation of deoxyribonucleic acid by new tumour inhibiting compounds: the intermediate formation of hydrogen peroxide. Experientia 19:132–133. https://doi.org/10.1007/BF02171591

    Article  CAS  PubMed  Google Scholar 

  17. Roux C, Jafari SM, Shinde R et al (2019) Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1. Proc Natl Acad Sci USA 116:4326–4335. https://doi.org/10.1073/pnas.1819473116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Q, Yin X, Wang W et al (2016) The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine. Oncol Lett 11:474–480. https://doi.org/10.3892/ol.2015.3879

    Article  CAS  PubMed  Google Scholar 

  19. Skapek SX, Colvin OM, Griffith OW et al (1988) Enhanced melphalan cytotoxicity following buthionine suffoximine-mediated glutathione depletion in a human medulloblastoma xenograft in athymic mice. Cancer Res 48:2764–2767

    CAS  PubMed  Google Scholar 

  20. Clark O, Park I, Di Florio A et al (2015) Oxovanadium-based inhibitors can drive redox-sensitive cytotoxicity in neuroblastoma cells and synergise strongly with buthionine sulfoximine. Cancer Lett 357:316–327. https://doi.org/10.1016/j.canlet.2014.11.039

    Article  CAS  PubMed  Google Scholar 

  21. Maeda H, Hori S, Ohizumi H et al (2004) Effective treatment of advanced solid tumors by the combination of arsenic trioxide and l-buthionine-sulfoximine. Cell Death Differ 11:737–746. https://doi.org/10.1038/sj.cdd.4401389

    Article  CAS  PubMed  Google Scholar 

  22. Villa-Pérez C, Cadavid-Vargas JF, Di Virgilio AL et al (2018) Crystal structure, Hirshfeld surface analysis, spectroscopic and biological studies on sulfamethazine and sulfaquinoxaline ternary complexes with 2,2′-biquinoline. New J Chem 42:891–901. https://doi.org/10.1039/C7NJ03624H

    Article  Google Scholar 

  23. Friedrich J, Ebner R, Kunz-Schughart L (2007) Experimental anti-tumor therapy in 3-D: spheroids–old hat or new challenge? Int J Radiat Biol 83:849–871. https://doi.org/10.1080/09553000701727531

    Article  CAS  PubMed  Google Scholar 

  24. Friedrich J, Eder W, Castaneda J et al (2007) a reliable tool to determine cell viability in complex 3-D culture: the acid phosphatase assay. J Biomol Screen 12:925–937. https://doi.org/10.1177/1087057107306839

    Article  CAS  PubMed  Google Scholar 

  25. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  26. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. https://doi.org/10.1016/0003-2697(76)90326-2

    Article  CAS  PubMed  Google Scholar 

  27. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212. https://doi.org/10.1016/S0891-5849(01)00480-4

    Article  CAS  PubMed  Google Scholar 

  28. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  PubMed  Google Scholar 

  29. Azqueta A, Collins AR (2013) The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch Toxicol 87:949–968. https://doi.org/10.1007/s00204-013-1070-0

    Article  CAS  PubMed  Google Scholar 

  30. Franken NAP, Rodermond HM, Stap J et al (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319. https://doi.org/10.1038/nprot.2006.339

    Article  CAS  Google Scholar 

  31. Anoopkumar-Dukie S, Carey JB, Conere T et al (2005) Resazurin assay of radiation response in cultured cells. Br J Radiol 78:945–947. https://doi.org/10.1259/bjr/54004230

    Article  CAS  PubMed  Google Scholar 

  32. Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  33. Hirsch FR, Scagliotti GV, Mulshine JL et al (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389:299–311. https://doi.org/10.1016/S0140-6736(16)30958-8

    Article  CAS  PubMed  Google Scholar 

  34. Aupérin A, Le Péchoux C, Rolland E et al (2010) Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non - small-cell lung cancer. J Clin Oncol 28:2181–2190. https://doi.org/10.1200/JCO.2009.26.2543

    Article  CAS  PubMed  Google Scholar 

  35. Curran WJ, Paulus R, Langer CJ et al (2011) Sequential vs concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III Trial RTOG 9410. J Natl Cancer Inst 103:1452–1460. https://doi.org/10.1093/jnci/djr325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pignon JP, Tribodet H, Scagliotti GV et al (2008) Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE collaborative group. J Clin Oncol 26:3552–3559. https://doi.org/10.1200/JCO.2007.13.9030

    Article  PubMed  Google Scholar 

  37. Iakovidis I, Delimaris I, Piperakis SM (2011) Copper and its complexes in medicine: a biochemical approach. Mol Biol Int 2011:1–13. https://doi.org/10.4061/2011/594529

    Article  CAS  Google Scholar 

  38. Shobha Devi C, Thulasiram B, Aerva RR, Nagababu P (2018) Recent advances in copper intercalators as anticancer agents. J Fluoresc 28:1195–1205. https://doi.org/10.1007/s10895-018-2283-7

    Article  CAS  PubMed  Google Scholar 

  39. O’Dwyer PJ, Hamilton TC, LaCreta FP et al (1996) Phase I trial of buthionine sulfoximine in combination with melphalan in patients with cancer. J Clin Oncol 14:249–256. https://doi.org/10.1200/JCO.1996.14.1.249

    Article  PubMed  Google Scholar 

  40. Lee M, Jo A, Lee S et al (2017) 3-bromopyruvate and buthionine sulfoximine effectively kill anoikis-resistant hepatocellular carcinoma cells. PLoS One. https://doi.org/10.1371/journal.pone.0174271

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rocha CRR, Garcia CCM, Vieira DB et al (2014) Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo. Cell Death Dis. https://doi.org/10.1038/cddis.2014.465

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cadavid-Vargas J, Leon I, Etcheverry S et al (2017) Copper(II) complexes with saccharinate and glutamine as antitumor agents: cytoand genotoxicity in human osteosarcoma cells. Anticancer Agents Med Chem 17:424–433. https://doi.org/10.2174/1871520616666160513130204

    Article  CAS  PubMed  Google Scholar 

  43. Cadavid-Vargas JF, Villa-Pérez C, Ruiz MC et al (2019) 6-Methoxyquinoline complexes as lung carcinoma agents: induction of oxidative damage on A549 monolayer and multicellular spheroid model. J Biol Inorg Chem 24:271–285. https://doi.org/10.1007/s00775-019-01644-7

    Article  CAS  PubMed  Google Scholar 

  44. Karlsson H, Fryknäs M, Strese S et al (2017) Mechanistic characterization of a copper containing thiosemicarbazone with potent antitumor activity. Oncotarget 8:30217–30234. https://doi.org/10.18632/oncotarget.16324

    Article  PubMed  PubMed Central  Google Scholar 

  45. Subastri A, Suyavaran A, Preedia Babu E et al (2018) Troxerutin with copper generates oxidative stress in cancer cells: Its possible chemotherapeutic mechanism against hepatocellular carcinoma. J Cell Physiol 233:1775–1790. https://doi.org/10.1002/jcp.26061

    Article  CAS  PubMed  Google Scholar 

  46. Ciocoiu M, Badescu M, Paduraru I (2007) Protecting antioxidative effects of vitamins E and C in experimental physical stress. J Physiol Biochem 63:187–194. https://doi.org/10.1007/BF03165781

    Article  CAS  PubMed  Google Scholar 

  47. Patrice T, Rozec B, Sidoroff A et al (2016) Influence of vitamins on secondary reactive oxygen species production in sera of patients with resectable NSCLC. Dis (Basel, Switzerland) 4:25. https://doi.org/10.3390/diseases4030025

    Article  CAS  Google Scholar 

  48. Kushwaha S, Vikram A, Trivedi PP, Jena GB (2011) Alkaline, EndoIII and FPG modified comet assay as biomarkers for the detection of oxidative DNA damage in rats with experimentally induced diabetes. Mutat Res 726:242–250. https://doi.org/10.1016/j.mrgentox.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  49. Uma V, Kanthimathi M, Weyhermuller T, Nair BU (2005) Oxidative DNA cleavage mediated by a new copper (II) terpyridine complex: crystal structure and DNA binding studies. J Inorg Biochem 99:2299–2307. https://doi.org/10.1016/j.jinorgbio.2005.08.011

    Article  CAS  PubMed  Google Scholar 

  50. Wang W, Lee YA, Kim G et al (2015) Oxidative DNA cleavage by Cu(II) complexes: effect of periphery substituent groups. J Inorg Biochem 153:143–149. https://doi.org/10.1016/j.jinorgbio.2015.07.015

    Article  CAS  PubMed  Google Scholar 

  51. Deng J, Yu P, Zhang Z et al (2018) Designing anticancer copper(II) complexes by optimizing 2-pyridine-thiosemicarbazone ligands. Eur J Med Chem 158:442–452. https://doi.org/10.1016/j.ejmech.2018.09.020

    Article  CAS  PubMed  Google Scholar 

  52. Trzeciak AR, Mohanty JG, Jacob KD et al (2012) Oxidative damage to DNA and single strand break repair capacity: relationship to other measures of oxidative stress in a population cohort. Mutat Res 736:93–103. https://doi.org/10.1016/j.mrfmmm.2012.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Storr SJ, Woolston CM, Zhang Y, Martin SG (2012) Redox environment, free radical, and oxidative DNA damage. Antioxid Redox Signal 18:2399–2408. https://doi.org/10.1089/ars.2012.4920

    Article  CAS  Google Scholar 

  54. Hajrezaie M, Paydar M, Moghadamtousi SZ et al (2014) A Schiff base-derived copper (II) complex is a potent inducer of apoptosis in colon cancer cells by activating the intrinsic pathway. Sci World J. https://doi.org/10.1155/2014/540463

    Article  Google Scholar 

  55. Zou BQ, Lu X, Qin QP et al (2017) Three novel transition metal complexes of 6-methyl-2-oxo-quinoline-3-carbaldehyde thiosemicarbazone: synthesis, crystal structure, cytotoxicity, and mechanism of action. RSC Adv 7:17923–17933. https://doi.org/10.1039/c7ra00826k

    Article  CAS  Google Scholar 

  56. Ota A, Wahiduzzaman M, Hosokawa Y (2018) Arsenic-based anticancer-combined therapy: novel mechanism inducing apoptosis of cancer cells. In: Current understanding of apoptosis—programmed cell death. InTech, p 64

  57. Hatem E, El Banna N, Huang M-E (2017) Multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance. Antioxid Redox Signal 27:1217–1234. https://doi.org/10.1089/ars.2017.7134

    Article  CAS  PubMed  Google Scholar 

  58. Zhou X-Q, Li Y, Zhang D-Y et al (2016) Copper complexes based on chiral Schiff-base ligands: DNA/BSA binding ability, DNA cleavage activity, cytotoxicity and mechanism of apoptosis. Eur J Med Chem 114:244–256. https://doi.org/10.1016/j.ejmech.2016.02.055

    Article  CAS  PubMed  Google Scholar 

  59. Lombardo T, Anaya L, Kornblihtt L, Blanco G (2012) Median effect dose and combination index analysis of cytotoxic drugs using flow cytometry. In: Flow Cytometry—Recent Perspectives. InTech, pp 393–420

  60. Marostica LL, Silva IT, Kratz JM et al (2015) Synergistic antiproliferative effects of a new cucurbitacin B derivative and chemotherapy drugs on lung cancer cell line A549. Chem Res Toxicol 28:1949–1960. https://doi.org/10.1021/acs.chemrestox.5b00153

    Article  CAS  PubMed  Google Scholar 

  61. Skov KA (1987) Modification of radiation response by metal complexes: a review with emphasis of nonplatinum studies. Radiat Res 112:217. https://doi.org/10.2307/3577253

    Article  CAS  PubMed  Google Scholar 

  62. Kirschner I, Citri N, Levitzki A, Anbar M (1970) The effect of copper on the radiosensitivity of bacteria. Int J Radiat Biol Relat Stud Phys Chem Med 17:81–85. https://doi.org/10.1080/09553007014550081

    Article  CAS  PubMed  Google Scholar 

  63. Liu C, Zhou J, Li Q et al (1999) Dna damage by copper(II) complexes: coordination-structural dependence of reactivities. J Inorg Biochem 75:233–240. https://doi.org/10.1016/S0162-0134(99)00037-9

    Article  CAS  PubMed  Google Scholar 

  64. de Oliveira SD, Alves WA, Rogero SO et al (2010) Synthesis, spectroscopic characterization and radiosensitizing properties of acetato-bridged copper(II) complexes with 5-nitroimidazole drugs. Inorg Chim Acta 367:85–92. https://doi.org/10.1016/j.ica.2010.12.006

    Article  CAS  Google Scholar 

  65. Desoize B, Jardillier J-C (2000) Multicellular resistance: a paradigm for clinical resistance? Crit Rev Oncol Hematol 36:193–207. https://doi.org/10.1016/S1040-8428(00)00086-X

    Article  CAS  PubMed  Google Scholar 

  66. Costa EC, Moreira AF, de Melo-Diogo D et al (2016) 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 34:1427–1441. https://doi.org/10.1016/j.biotechadv.2016.11.002

    Article  PubMed  Google Scholar 

  67. Timerbaev AR (2009) Advances in developing tris(8-quinolinolato)gallium(iii) as an anticancer drug: critical appraisal and prospects. Metallomics 1:193–198. https://doi.org/10.1039/b902861g

    Article  CAS  PubMed  Google Scholar 

  68. Kubista B, Schoefl T, Mayr L et al (2017) Distinct activity of the bone-targeted gallium compound KP46 against osteosarcoma cells—synergism with autophagy inhibition. J Exp Clin Cancer Res 36:52. https://doi.org/10.1186/s13046-017-0527-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi X, Chen Z, Wang Y et al (2018) Hypotoxic copper complexes with potent anti-metastatic and anti-angiogenic activities against cancer cells. Dalt Trans 47:5049–5054. https://doi.org/10.1039/c8dt00794b

    Article  CAS  Google Scholar 

  70. Gu SS, Yu P, Hu JN et al (2019) Mitochondria-localizing N-heterocyclic thiosemicarbazone copper complexes with good cytotoxicity and high antimetastatic activity. Eur J Med Chem 164:654–664. https://doi.org/10.1016/j.ejmech.2019.01.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by UNLP (PPID 2018/X032, PID 2020/2023 X899) and ANPCyT (PICT 2016-0508) from Argentina. In addition, the authors would like to thank Terapia Radiante CIO-La Plata S.A. and Engineer Marcelo Martinez for allowing and helping us to carry out the irradiation assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Di Virgilio.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflict of interest with the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 321 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadavid Vargas, J.F., Villa Perez, C., Soria, D.B. et al. Enhanced antitumor effect of l-buthionine sulfoximine or ionizing radiation by copper complexes with 2,2´-biquinoline and sulfonamides on A549 2D and 3D lung cancer cell models. J Biol Inorg Chem 27, 329–343 (2022). https://doi.org/10.1007/s00775-022-01933-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01933-8

Keywords

Navigation