Skip to main content
Log in

Molecular recognition and binding of CcrA from Bacteroides fragilis with cefotaxime and ceftazidime by fluorescence spectra and molecular docking

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In search of new super-bacterial inhibitor agents, the recognition and binding mechanism of the B1 subclass MβL CcrA from Bacteroides fragilis with cefotaxime (CTX) and ceftazidime (CAZ) were studied using spectroscopy analysis and molecular docking. The results showed that the fluorescence quenching of CcrA induced by CTX and CAZ were all due to the complex formation, which belonged to static quenching and was forced by hydrogen bonds and Van der Waals forces, despite the greater binding ability of CTX with CcrA than CAZ. Upon recognizing CTX or CAZ, the CcrA opened its binding pocket by the microenvironmental and conformational of three loops changing to promote an induced-fit of the freshly introduced antibiotics. In addition, the whole antibiotic molecule ultimately entered the active pocket of CcrA with its original carbonate replaced by the carboxyl oxygen of the hexatomic ring adjacent to the β-lactam ring in CTX or CAZ, forming a new tetrahedral coordination structure at the Zn2 site. Moreover, the difference in steric hindrance and electrostatic effects of the side chain affected the binding ability of the two antibiotics to the CcrA. This work showed the refined procedures of the antibiotics binding to CcrA and might provide useful information hint for the new strategy of developing the novel and innovative super-bacterial antibiotics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moellering RC Jr (2010) New Engl J Med 363:2377–2379

    Article  CAS  PubMed  Google Scholar 

  2. Arya SC, Agarwal N (2011) Travel Med Infect Dis 9:47–48

    Article  PubMed  Google Scholar 

  3. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S (2010) Lancet Infect Dis 10:597–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Antimicrob Agents Chemother 53:5046–5054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rice LB (2008) The University of Chicago press

    Google Scholar 

  6. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Clin Infect Dis 48:1–12

    Article  PubMed  Google Scholar 

  7. Concha NO, Rasmussen BA, Bush K, Herzberg O (1996) Structure 4:823–836

    Article  CAS  PubMed  Google Scholar 

  8. Yanchak MP, Taylor RA, Crowder MW (2000) Biochemistry 39:11330–11339

    Article  CAS  PubMed  Google Scholar 

  9. Park H, Brothers EN, Merz KM (2005) J Am Chem Soc 127:4232–4241

    Article  CAS  PubMed  Google Scholar 

  10. Breece RM, Hu Z, Bennett B, Crowder MW, Tierney DL (2009) J Am Chem Soc 131:11642–11643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aitha M, Moritz L, Sahu ID, Sanyurah O, Roche Z, McCarrick R, Lorigan GA, Bennett B, Crowder MW (2015) J Biol Inorg Chem 20:585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gangadharappa BS, Sharath R, Revanasiddappa PD, Chandramohan V, Balasubramaniam M, Vardhineni TP (2020) J Biomol Struct Dyn 38:3757–3771

    Article  CAS  PubMed  Google Scholar 

  13. Majiduddin FK, Materon IC, Palzkill TG (2002) Int J Med Microbiol 292:127–137

    Article  CAS  PubMed  Google Scholar 

  14. Carfi A, Pares S, Duee E, Galleni M, Duez C, Frere JM, Dideberg O (1995) EMBO J 14:4914–4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Z, Benkovic SJ (1998) J Biol Chem 273:22402–22408

    Article  CAS  PubMed  Google Scholar 

  16. Bebrone C (2007) Biochem Pharmacol 74:1686–1701

    Article  CAS  PubMed  Google Scholar 

  17. Toney JH, Moloughney JG (2004) Curr Opin Investig Drugs 5:823–826

    CAS  PubMed  Google Scholar 

  18. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  19. Bafeltowska JJ, Buszman E, Mandat K, Hawranek J (2002) J Chromatogr A 976:249–254

    Article  CAS  PubMed  Google Scholar 

  20. Myers CM, Blumer JL (1983) Antimicrob Agents Chemother 24:343–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Albrecht C (2008) Anal Bioanal Chem 390:1223–1224

    Article  CAS  Google Scholar 

  22. Delano WL (2002) Proteins Struct Funct Bioinf 30:442–454

    Google Scholar 

  23. Dal Peraro M, Vila AJ, Carloni P, Klein ML (2007) J Am Chem Soc 129:2808–2816

    Article  Google Scholar 

  24. Borgogna M, Skjåk-Bræk G, Paoletti S, Donati I (2013) J Phys Chem B 117:7277–7282

    Article  CAS  PubMed  Google Scholar 

  25. Zhu K, Lu J, Liang Z, Kong X, Luo C (2013) J Comput Aided Mol Des 27:247–256

    Article  CAS  PubMed  Google Scholar 

  26. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  27. Rampogu S, Baek A, Gajula RG, Zeb A, Bavi RS, Kumar R, Kim Y, Kwon YJ, Lee KW (2018) Ann Clin Microbiol Antimicrob 17:16

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W (2000) Acc Chem Res 33:889–897

    Article  CAS  PubMed  Google Scholar 

  29. Weiser J, Shenkin PS, Still WC (1999) J Comput Chem 20(7):688–703

    Article  CAS  PubMed  Google Scholar 

  30. Chambers CC, Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem B 100:16385–16398

    Article  CAS  Google Scholar 

  31. Delano WL (2002) Proteins 30:442–454

    Google Scholar 

  32. Ermakova E (2016) Comput Biol Chem 64:281–296

    Article  CAS  PubMed  Google Scholar 

  33. Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:19824–19839

    Article  CAS  Google Scholar 

  34. Yang Y, Rasmussen BA, Bush K (1992) Antimicrob Agents Chemother 36:1155–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goudar CT, Sonnad JR, Duggleby RG (1999) Biochim Biophys Acta Protein Struct Mol Enzymol 1429:377–383

    Article  CAS  Google Scholar 

  36. Sharma AS, Anandakumar S, Ilanchelian M (2014) RSC Adv 4:36267–36281

    Article  CAS  Google Scholar 

  37. Zhang Y-F, Zhou K-L, Lou Y-Y, Pan D-Q, Shi J-H (2017) J Biomol Struct Dyn 35:3605–3614

    Article  CAS  PubMed  Google Scholar 

  38. Shahabadi N, Fili SM (2014) Spectrochimica acta part a molecular and biomolecular. Spectroscopy 118C:422–429

    Google Scholar 

  39. Eftink MR, Ghiron CA (1981) Anal Biochem 114:199–227

    Article  CAS  PubMed  Google Scholar 

  40. Ojha H, Mishra K, Hassan MI, Chaudhury NK (2012) Thermochim Acta 548:56–64

    Article  CAS  Google Scholar 

  41. Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer science and business media

    Google Scholar 

  42. Shahabadi N, Maghsudi M, Kiani Z, Pourfoulad M (2011) Food Chem 124:1063–1068

    Article  CAS  Google Scholar 

  43. Zhang YF, Zhou KL, Lou YY, Pan DQ, Shi JH (2016) J Biomol Struct Dyn 35(16):3605–3614

    Article  PubMed  Google Scholar 

  44. Li J, Li J, Jiao Y, Dong C (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 118:48–54

    Article  CAS  Google Scholar 

  45. Yin L, Qin C, Chen K, Zhu C, Cao H, Zhou J, He W, Zhang Q (2013) Int J Pharm 452:241–248

    Article  CAS  PubMed  Google Scholar 

  46. Abou-Zied OK, Al-Shihi OI (2008) J Am Chem Soc 130:10793–10801

    Article  CAS  PubMed  Google Scholar 

  47. Kou S-B, Lin Z-Y, Wang B-L, Shi J-H, Liu Y-X (2021) J Mol Struct 1224:129024

    Article  CAS  Google Scholar 

  48. Ross PD, Subramanian S (1981) Biochemistry 20:3096–3102

    Article  CAS  PubMed  Google Scholar 

  49. Jiang XY, Li WX, Cao H (2008) J Solution Chem 37:1609–1623

    Article  CAS  Google Scholar 

  50. Tarabini RF, Timmers L, Sequeiros-Borja CE, Norberto de Souza O (2019) Sci Rep 9:13683

    Article  PubMed  PubMed Central  Google Scholar 

  51. Guo Y, Wang J, Niu G, Shui W, Sun Y, Zhou H, Zhang Y, Yang C, Lou Z, Rao Z (2011) Protein Cell 2:384–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China [grant numbers 31971143, 21075097].

Author information

Authors and Affiliations

Authors

Contributions

LJB: conceptualization and supervision. MJD and PQ: performed the experiments, formal analysis, data curation, and writing—original draft. JKB, JXZ and JY: formal analysis and data curation. MJD, JKB and JY: writing—review and editing.

Corresponding author

Correspondence to Liujiao Bian.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3269 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, M., Bai, J., Yang, J. et al. Molecular recognition and binding of CcrA from Bacteroides fragilis with cefotaxime and ceftazidime by fluorescence spectra and molecular docking. J Biol Inorg Chem 27, 283–295 (2022). https://doi.org/10.1007/s00775-022-01927-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01927-6

Keywords

Navigation