Skip to main content
Log in

Mechanism of cyanocobalamin chlorination by hypochlorous acid

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Hypochlorous acid (HOCl) is a strong oxidant produced by myeloperoxidase. Previous work suggested that HOCl modifies the corrin ring of cobalamins to yield chlorinated species via mechanisms that are incompletely understood. Herein, we report a mechanistic study on the reaction between cyanocobalamin (CNCbl, vitamin B12) and HOCl. Under weakly acidic, neutral and weakly alkaline conditions, the reaction produces the c-lactone derivative of CNCbl chlorinated at the C10-position of corrin ring (C10–Cl–CNCbl-c-lactone). Formation of C10–Cl–CNCbl-c-lactone was not observed at pH ≥ 9.9. The chlorination of CNCbl by HOCl proceeds via two pathways involving one and two HOCl molecules: the reaction is initiated by the very fast formation of a complex between CNCbl and HOCl, which either undergoes slow transformation to chlorinated species, or rapidly reacts with a second HOCl molecule to produce C10–Cl–CNCbl. Subsequent reaction of C10–Cl–CNCbl with HOCl proceeds rapidly toward lactone ring formation by H-atom abstraction at position C8. This work uncovered mechanisms and products of the reaction of a biologically active and therapeutically used cobalamin, CNCbl and the endogenous oxidant HOCl. Binding and reactivity studies of C10–Cl–CNCbl and C10–Cl–CNCbl-c-lactone with relevant proteins of the cobalamin pathway and with cultured cells are necessary to elucidate the potential physiological effects of these species.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Scheme 1.

Similar content being viewed by others

Abbreviations

C10–Cl–CNCbl:

CNCbl chlorinated at C10-position of corrin ring

C10–Cl–CNCbl-c-lactone:

C-lactone derivative of C10–Cl–CNCbl

Cbl:

Cobalamin

CNCbl:

Cyanocobalamin

GSCbl:

Glutathionylcobalamin

H2OCbl:

Aquacobalamin

HSQC:

Heteronuclear single quantum coherence

References

  1. Dereven’kov IA, Salnikov DS, Silaghi-Dumitrescu R, Makarov SV, Koifman OI (2016) Coord Chem Rev 309:68–83

    Article  Google Scholar 

  2. ó Proinsias K, Giedyk M, Gryko D (2013) Chem Soc Rev 42:6605–6619

    Article  Google Scholar 

  3. Malech HL, Gallin JI (1987) N Engl J Med 317:687–694

    Article  CAS  Google Scholar 

  4. Davies MJ (2011) J Clin Biochem Nutr 48:8–19

    Article  CAS  Google Scholar 

  5. Pullar JM, Vissers MC, Winterbourn CC (2000) IUBMB Life 50:259–266

    Article  CAS  Google Scholar 

  6. Peskin AV, Winterbourn CC (2001) Free Radic Biol Med 30:572–579

    Article  CAS  Google Scholar 

  7. Pattison D, Davies MJ (2001) Chem Res Toxicol 14:1453–1464

    Article  CAS  Google Scholar 

  8. Storkey C, Davies MJ, Pattison DI (2014) Free Radic Biol Med 73:60–66

    Article  CAS  Google Scholar 

  9. Balasubramanian PN, Gould ES (1984) Inorg Chem 23:3689–3693

    Article  CAS  Google Scholar 

  10. Dassanayake RS, Farhath MM, Shelley JT, Basu S, Brasch NE (2016) J Inorg Biochem 163:81–87

    Article  CAS  Google Scholar 

  11. Dereven’kov IA, Shpagilev NI, Valkai L, Salnikov DS, Horváth AK, Makarov SV (2017) J Biol Inorg Chem 22:453–459

    Article  Google Scholar 

  12. Dereven’kov IA, Makarov SV, Shpagilev NI, Salnikov DS, Koifman OI (2017) Biometals 30:757–764

    Article  Google Scholar 

  13. Abu-Soud HM, Maitra D, Byun J, Souza CEA, Banerjee J, Saed GM, Diamond MP, Andreana PR, Pennathur S (2012) Free Radic Biol Med 52:616–625

    Article  CAS  Google Scholar 

  14. Prinsloo FF, Breet ELJ, van Eldik R (1995). J Chem Soc Dalton Trans 685–688. https://doi.org/10.1039/dt9950000685

    Article  Google Scholar 

  15. Okamoto N, Bito T, Hiura N, Yamamoto A, Iida M, Baba Y, Fujita T, Ishihara A, Yabuta Y, Watanabe F (2020) ACS Omega 5:6207–6214

    Article  CAS  Google Scholar 

  16. Harwood DT, Kettle AJ, Winterbourn CC (2006) Biochem J 399:161–168

    Article  CAS  Google Scholar 

  17. Maitra D, Ali I, Abdulridha RM, Shaeib F, Khan SN, Saed GM, Pennathur S, Abu-Soud HM (2014). PLoS ONE. https://doi.org/10.1371/journal.pone.0110595

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brown KL, Cheng S, Zou X, Zubkowski JD, Valente EJ, Knapton L, Marques HM (1997) Inorg Chem 36:3666–3675

    Article  CAS  Google Scholar 

  19. Knapton L, Marques HM (2005). Dalton Trans 889–895. https://doi.org/10.1039/b416083e

    Article  PubMed  Google Scholar 

  20. Wagner F, Bernhauer K (1964) Ann NY Acad Sci 112:580–589

    Article  CAS  Google Scholar 

  21. Ghadimi N, Perry CB, Fernandes MA, Govender PP, Marques HM (2015) Inorg Chim Acta 436:29–38

    Article  CAS  Google Scholar 

  22. Wierzba AJ, Wincenciuk A, Karczewski M, Vullev VI, Gryko D (2018) Chem Eur J 24:10344–10356

    Article  CAS  Google Scholar 

  23. Prieto L, Rossier J, Derszniak K, Dybas J, Oetterli RM, Kottelat E, Chlopicki S, Zelder F, Zobi F (2017) Chem Commun 53:6840–6843

    Article  CAS  Google Scholar 

  24. Ashby MT, Carlson AC, Scott MJ (2004) J Am Chem Soc 126:15976–15977

    Article  CAS  Google Scholar 

  25. Palmer AG III, Cavanagh J, Wright PE, Rance M (1991) J Magn Reson (1969) 93:151–170

    Article  CAS  Google Scholar 

  26. Kay LE, Keifer P, Saarinen T (1992) J Am Chem Soc 114:10663–10665

    Article  CAS  Google Scholar 

  27. Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sørensen OW, Griesinger C (1994) J Biomol NMR 4:301–306

    Article  CAS  Google Scholar 

  28. Calafat AM, Marzilli LG (1993) J Am Chem Soc 115:9182–9190

    Article  CAS  Google Scholar 

  29. Navizet I, Perry CB, Govender PP, Marques HM (2012) J Phys Chem B 116:8836–8845

    Article  CAS  Google Scholar 

  30. Khodov IA, Alper GA, Mamardashvili GM, Mamardashvili NZh (2015) J Mol Struct 1099:174–180

    Article  CAS  Google Scholar 

  31. Efimov SV, Dubinin MV, Kobchikova PP, Zgadzay YuO, Khodov IA, Belosludtsev KN, Klochkov VV (2020) Biochem Biophys Res Commun 526:1054–1060

    Article  CAS  Google Scholar 

  32. Maltceva O, Mamardashvili G, Khodov I, Lazovskiy D, Khodova V, Krest’yaninov M, Mamardashvili N, Dehaen W (2017) J Supramol Chem 29:360–369

    Article  CAS  Google Scholar 

  33. Kormányos B, Nagypál I, Peintler G, Horváth AK (2008) Inorg Chem 47:7914–7920

    Article  Google Scholar 

  34. Brown KL (2005) Chem Rev 105:2075–2149

    Article  CAS  Google Scholar 

  35. Hannibal L, DiBello PM, Jacobsen DW (2013) Clin Chem Lab Med 51:477–488

    Article  CAS  Google Scholar 

  36. Kim J, Hannibal L, Gherasim C, Jacobsen DW, Banerjee К (2009) J Biol Chem 284:33418–33424

    Article  CAS  Google Scholar 

  37. Wingert V, Mukherjee S, Esser AJ, Behringer S, Tanimowo S, Klenzendorf M, Dereven’kov IA, Makarov SV, Jacobsen DW, Spiekerkoetter U, Hannibal L (2021) Biochimie 83:108–125

    Article  Google Scholar 

  38. Banerjee R (2006) ACS Chem Biol 1:149–159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project no. 19-73-00147) to IAD. The authors thank researcher D.V. Tyurin of the Shared Scientific Resource Center, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia, for his help in analyzing the products of the reaction between cyanocobalamin and hypochlorous acid using MALDI-mass-spectrometry. The NMR spectroscopy experiment was performed using the molecular fluid spectroscopy facility (http://www.ckp-rf.ru/usu/503933/) of G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences (ISC RAS) (Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia A. Dereven’kov.

Ethics declarations

Conflict of interest

Raw data on mass-spectrometry and 2D-NMR results presented in our study are available to colleagues upon reasonable request. All requests should be directed to the corresponding author. The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 736 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dereven’kov, I.A., Osokin, V.S., Hannibal, L. et al. Mechanism of cyanocobalamin chlorination by hypochlorous acid. J Biol Inorg Chem 26, 427–434 (2021). https://doi.org/10.1007/s00775-021-01869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01869-5

Keywords

Navigation