Skip to main content
Log in

BSA/DNA binding behavior and the photophysicochemical properties of novel water soluble zinc(II)phthalocyanines directly substituted with piperazine groups

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In the current research, two novel zinc(II) phthalocyanines (ZnPcs) (1 and 2) directly connecting with 4-(4-methylpiperazin-1-yl)phenyl groups have been synthesized through the Suzuki–Miyaura coupling reaction. These ZnPcs 1 and 2 were converted to their water-soluble derivatives (1Q and 2Q) by quaternization. The photochemical and photophysical properties were determined in DMSO for the non-ionic zinc(II) phthalocyanines (1 and 2) and in both DMSO and aqueous solutions for the quaternized cationic derivatives (1Q and 2Q) to establish their photosensitizer capabilities in photodynamic therapy (PDT). The spectrofluorometric and spectrophotometric techniques were employed for the determination of interaction between water-soluble ZnPcs (1Q and 2Q) and BSA or ct-DNA. The binding constants of these compounds to BSA were found in the order of 108 M−1. The binding constant of the ct-DNA interaction with 2Q (1.09 × 105 M−1) was found higher than 1Q (6.87 × 104 M−1). The thermodynamic constants were determined for both 1Q and 2Q. The endothermic and spontaneous nature of interaction was observed with ct-DNA. Besides, the thermal denaturation and viscosity studies proved the non-intercalative mode of binding for both compounds to ct-DNA.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157

    Article  CAS  PubMed  Google Scholar 

  2. Li X, Zheng BD, Peng XH, Li S, Ying JW, Zhao Y, Huang JD, Yoon JY (2019) Phthalocyanines as medicinal photosensitizers: developments in the last five years. Coord Chem Rev 379:147–160

    Article  CAS  Google Scholar 

  3. Nyamu SN, Lucy O, Eric M, Ng’ang’a M (2018) Antimicrobial photodynamic activity of phthalocyanine derivatives. Adv Chem 3:1–8

    Article  Google Scholar 

  4. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  CAS  PubMed  Google Scholar 

  5. Volkov KA, Avramenko GV, Negrimovskii VM, Luk’yanets EA (2008) Phthalocyanines and related compounds: XLVII. Nucleophilic replacement of chlorine atoms in tetrachlorophthalonitrile. Synthesis of phenyl(alkyl)amino-substituted phthalonitriles and some phthalocyanines based thereon. Russ J Gen Chem 78:1787–1793

    Article  CAS  Google Scholar 

  6. Zhu YJ, Huang JD, Jiang XJ, Sun JC (2006) Novel silicon phthalocyanines axially modified by morpholine: synthesis, complexation with serum protein and in vitro photodynamic activity. Inorg Chem Commun 9:473–477

    Article  CAS  Google Scholar 

  7. Dur E, Bulut M (2010) Derivatizable novel β-tetra 7-oxycoumarin-3-carboxylate substituted metallophthalocyanines: synthesis and characterization. Polyhedron 29:2689–2695

    Article  CAS  Google Scholar 

  8. Dlugaszewska J, Szczolko W, Koczorowski T, Skupin-Mrugalska P, Teubert A, Konopka K, Kucinska M, Murias M, Düzgüneş N, Mielcar J, Goslinski T (2017) Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N-methyl morpholiniumethoxy substituents in non-peripheral positions. J Inorg Biochem 17:67–79

    Article  Google Scholar 

  9. Chen SX, Du SY, Wang Y-T, Zhao HC, Zhang YL, Yao L (2016) Retinoic acid morpholine amide (RAMA) inhibits expression of Fas ligand through EP1 receptor in colon cancer cells. Tumor Biol 37:323–329

    Article  CAS  Google Scholar 

  10. Barut B, Demirbaş Ü, Şenocak A, Özel A, Kantekin H (2017) Water soluble axially morpholine disubstituted silicon phthalocyanines: synthesis, characterisation, DNA/BSA binding, DNA photocleavage properties. Synth Met 229:22–32

    Article  CAS  Google Scholar 

  11. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  CAS  PubMed  Google Scholar 

  12. Ogunsipe A, Nyokong T, Durmuş M (2007) Photophysical, photochemical and bovine serum albumin binding studies on water-soluble gallium(III) phthalocyanine derivatives. J Porphyrins Phthalocya 11:635–644

    Article  CAS  Google Scholar 

  13. Miller I, Gemeiner M (1993) Peculiarities in electrophoretic behavior of different serum albumins. Electrophoresis 14:1312–1317

    Article  CAS  PubMed  Google Scholar 

  14. Michnik A, Michalik K, Kluczewska A, Drzazga Z (2006) Comparative DSC study of human and bovine serum albumin. J Therm Anal Calor 84:113–117

    Article  CAS  Google Scholar 

  15. Kosa T, Maruyama T, Otagiri M (1998) Species differences of serum albumins: II. Chemical and thermal stability. Pharm Res 15:449–454

    Article  CAS  PubMed  Google Scholar 

  16. Kosa T, Maruyama T, Otagiri M (1997) Species differences of serum albumins: I Drug binding sites. Pharm Res 14:1607–1612

    Article  CAS  PubMed  Google Scholar 

  17. Tayyab S, Khan NJ, Khan MA, Kumar Y (2003) Behavior of various mammalian albumins towards bilirubin binding and photochemical properties of different bilirubin–albumin complexes. Int J Biol Macromol 31:187–193

    Article  CAS  PubMed  Google Scholar 

  18. Frederick R, Bruyere C, Vancraeynest C, Reniers J, Meinguet C, Pochet L, Backlund A, Masereel B, Kiss R, Wouters J (2012) Novel trisubstituted harmine derivatives with original in vitro anticancer activity. J Med Chem 55:6489–6501

    Article  CAS  PubMed  Google Scholar 

  19. Volk RB, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161:180–186

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Shao J, Yao S, Zhang S, Yan J, Wang H, Chen Y (2014) Study on the antithrombotic activity of Umbilicaria esculenta polysaccharide. Carbohydr Polym 105:231–236

    Article  CAS  PubMed  Google Scholar 

  21. Cao R, Peng W, Wang Z, Xu A (2007) β-Carboline alkaloids: biochemical and pharmacological functions. Curr Med Chem 14:479–500

    Article  CAS  PubMed  Google Scholar 

  22. Kamiński K, Wiklik B, Obniska J (2015) Synthesis and anticonvulsant activity of new N-phenyl-2-(4-phenylpiperazin-1-yl) acetamide derivatives. Med Chem Res 24:3047–3061

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aggarwal M, Kaur R, Saha A, Mudgal R, Yadav R, Dash PK, Parida M, Kumar P, Tomar S (2017) Evaluation of antiviral activity of piperazine against chikungunya virus targeting hydrophobic pocket of alphavirus capsid protein. Antiviral Res 146:102–111

    Article  CAS  PubMed  Google Scholar 

  24. Sarı C, Nalçaoğlu A, Değirmencioğlu İ, Eyüpoğlu FC (2021) Tumor-selective new piperazine-fragmented silicon phthalocyanines initiate cell death in breast cancer cell lines. J Photochem Photobiol B Biol 216:112143

    Article  Google Scholar 

  25. Baş H, Barut B, Biyiklioglu Z, Özel A (2019) Synthesis, DNA interaction, topoisomerase I, II inhibitory and cytotoxic effects of water soluble silicon (IV) phthalocyanine and napthalocyanines bearing 1-acetylpiperazine units. Dyes Pigm 160:136–144

    Article  Google Scholar 

  26. Jiang XJ, Huang JD, Zhu YJ, Tang FX, Ng DK, Sun JC (2006) Preparation and in vitro photodynamic activities of novel axially substituted silicon (IV) phthalocyanines and their bovine serum albumin conjugates. Bioorg Med Chem Let 16:2450–2453

    Article  CAS  Google Scholar 

  27. Khezami K, Harmandar K, Bağda E, Bağda E, Şahin G, Karakodak N, Jamoussie B, Durmuş M (2020) The new water soluble zinc (II) phthalocyanines substituted with morpholine groups-synthesis and optical properties. J Photochem Photobiol A Chem 401:112736

    Article  CAS  Google Scholar 

  28. Kumar N, Bhalla V, Kumar M (2021) Beyond zinc coordination: bioimaging applications of Zn (II)-complexes. Coord Chem Rev 427:213550

    Article  CAS  Google Scholar 

  29. Christian A, Anny J, Gaëtan LD (2011) Mechanism of palladium-catalyzed Suzuki-Miyaura reactions: multiple and antagonistic roles of anionic “Bases” and their countercations. Chem A Eur J 17:2492–2503

    Google Scholar 

  30. Nyokong T, Ahsen V (2012) Photosensitizers in medicine, environment and security. Springer, Dordrecht Heidelberg London New York

    Book  Google Scholar 

  31. Ogunsipe A, Chen JY, Nyokong T (2004) Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives effects of substituents and solvents. New J Chem 28:822–827

    Article  CAS  Google Scholar 

  32. Kuznetsova N, Makarov D, Derkacheva V, Savvina L, Alekseeva V, Marinina L, Slivka L, Kaliya O, Lukyanets E (2008) Intramolecular energy transfer in rhodamine– phthalocyanine conjugates. J Photochem Photobiol A Chem 200:161–168

    Article  CAS  Google Scholar 

  33. Gürol I, Durmuş M, Ahsen V, Nyokong T (2007) Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines. Dalton Trans 34:3782–3791

    Article  Google Scholar 

  34. Wang YQ, Zhang HM, Zhang GC, Tao WH, Tang SH (2007) Interaction of the flavonoid hesperidin with bovine serum albumin: a fluorescence quenching study. J Lumin 1:211–218

    Article  Google Scholar 

  35. Teng Y, Liu R, Li C, Xia Q, Zhang P (2011) The interaction between 4-aminoantipyrine and bovine serum albumin: multiple spectroscopic and molecular docking investigations. J Hazar Mater 190:574–581

    Article  CAS  Google Scholar 

  36. Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare OB (2006) Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharmaceut Biomed 2:393–399

    Article  Google Scholar 

  37. Topală T, Bodoki A, Oprean L, Oprean R (2014) Bovine serum albumin interactions with metal complexes. Med Pharm Rep 4:215–219

    Google Scholar 

  38. Panjehshahin MR, Yates MS, Bowmer CJ (1992) A comparison of drug binding sites on mammalian albumins. Biochem Pharm 44:873–879

    Article  CAS  PubMed  Google Scholar 

  39. Poór M, Li Y, Matisz G, Kiss L, Kunsági-Máté S, Kőszegi T (2014) Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: a test case with some Sudlow’s site I ligands. J Lumin 145:767–773

    Article  Google Scholar 

  40. Meloun B, Moravek L, Kostka V (1975) Complete amino acid sequence of human serum albumin. FEBS Lett 58:134–137

    Article  CAS  PubMed  Google Scholar 

  41. Carter DC, He XM (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  PubMed  Google Scholar 

  42. MacGillivray RT, Chung DW, Davie EW (1979) Biosynthesis of bovine plasma proteins in a cell-free system: amino-terminal sequence of preproalbumin. Eur J Biochem 98:477–485

    Article  CAS  Google Scholar 

  43. Hirayama K, Akashi S, Furuya M, Fukuhara KI (1990) Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS. Biochem Biophys Res Commun 173:639–646

    Article  CAS  PubMed  Google Scholar 

  44. Straus AW, Bennett CD, Donohue AM, Rodkey JA, Alberts AW (1977) Rat liver pre-proalbumin: complete amino acid sequence. J Biol Chem 252:6846–6855

    Article  Google Scholar 

  45. Isemura S, Ikenaka T (1978) Amino acid sequences of fragments I and II obtained by cyanogen bromide cleavage of rat serum albumin. J Biochem 83:35–48

    Article  CAS  PubMed  Google Scholar 

  46. Çakir V, Çakir D, Pişkin M, Durmuş M, Biyiklioǧlu Z (2014) Water soluble peripheral and non-peripheral tetrasubstituted zinc phthalocyanines: synthesis, photochemistry and bovine serum albumin binding behavior. J Lumin 154:274–284

    Article  Google Scholar 

  47. Esenpinar AA, Durmuş M, Bulut M (2011) Photophysical, photochemical and BSA binding/BQ quenching properties of quaternizable coumarin containing water soluble zinc phthalocyanine complexes. Spectrochim Acta Part A 3:608–617

    Article  Google Scholar 

  48. Durmuş M, Yaman H, Göl C, Ahsen V, Nyokong T (2011) Water-soluble quaternized mercaptopyridine-substituted zinc-phthalocyanines: synthesis, photophysical, photochemical and bovine serum albumin binding properties. Dyes Pigm 91:153–163

    Article  Google Scholar 

  49. Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M (2015) Studying non-covalent drug-DNA interactions. Arch Biochem Biophys 576:49–60

    Article  PubMed  Google Scholar 

  50. Sirajuddin M, Ali S, Badshah A (2013) Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B: Biol 124:1–19

    Article  CAS  Google Scholar 

  51. Liu Y, Mei W, Lu J, Zhao H, He L, Wu F (2008) Ruthenium (II) complexes of 2-(2′-pyridyl) naphthoimidazole: synthesis, characterization and DNA-binding studies. J Coord Chem 61:3213–3224

    Article  CAS  Google Scholar 

  52. Shi S, Liu J, Li J, Zheng K, Huang X (2006) Synthesis, characterization and DNA-binding of novel chiral complexes D- and K-[Ru(bpy)2L]2+ (L =o-mopip and p-mopip). J Inorg Biochem 100:385–395

    Article  CAS  PubMed  Google Scholar 

  53. Kumar CV, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 19:8547–8553

    Article  Google Scholar 

  54. Zeballos NC, Gauna GA, García Vior MC, Awruch J, Dicelio LE (2014) Interaction of cationic phthalocyanines with DNA. Importance of the structure of the substituents. J Photochem Photobiol B Biol 136:29–33

    Article  Google Scholar 

  55. Özçeşmeci M, Ecevit ÖB, Sürgün S, Hamuryudan E (2013) Tetracationic fluorinated zinc(ii)phthalocyanine: synthesis, characterization and DNA-binding properties. Dyes Pigm 1:52–58

    Article  Google Scholar 

  56. Wang T, Wang A, Zhou L, Lu S, Jiang W, Lin Y, Zhou J, Wei S (2013) Synthesis of a novel water-soluble zinc phthalocyanine and its CT DNA-damaging studies. Spectrochim Acta Part A 115:445–451

    Article  CAS  Google Scholar 

  57. Strekowski L, Wilson B (2007) Noncovalent interactions with DNA: an overview. Mutat Res/Fundam Mol Mech Mutagen 623:3–13

    Article  CAS  Google Scholar 

  58. Shahabadi N, Maghsudi M (2014) Multi-spectroscopic and molecular modeling studies on the interaction of antihypertensive drug; methyldopa with calf thymus DNA. Mol BioSyst 10:338–347

    Article  CAS  PubMed  Google Scholar 

  59. Dezhampanah H, Darvishzad T, Aghazadeh M (2011) Thermodynamic and spectroscopic study on the binding of interaction anionic phthalocyanine with calf thymus DNA. Spectroscopy 26:357–365

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Durmuş.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1783 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezami, K., Harmandar, K., Bağda, E. et al. BSA/DNA binding behavior and the photophysicochemical properties of novel water soluble zinc(II)phthalocyanines directly substituted with piperazine groups. J Biol Inorg Chem 26, 455–465 (2021). https://doi.org/10.1007/s00775-021-01868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01868-6

Keywords

Navigation