Skip to main content
Log in

Design and synthesis of N-hydroxyalkyl substituted deferiprone: a kind of iron chelating agents for Parkinson's disease chelation therapy strategy

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The blood–brain barrier (BBB) permeability of molecules needs to meet stringent requirements of Lipinski’s rule, which pose a difficulty for the rational design of efficient chelating agents for Parkinson's disease chelation therapy. Therefore, the iron chelators employed N-aliphatic alcohols modification of deferiprone were reasonably designed in this work. The chelators not only meet Lipinski’s rule for BBB permeability, but also ensure the iron affinity. The results of solution thermodynamics demonstrated that the pFe3+ value of N-hydroxyalkyl substituted deferiprone is between 19.20 and 19.36, which is comparable to that of clinical deferiprone. The results of 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays indicated that the N-hydroxyalkyl substituted deferiprone also possesses similar radical scavenging ability in comparison to deferiprone. Meanwhile, the Cell Counting Kit-8 assays of neuron-like rat pheochromocytoma cell-line demonstrated that the N-hydroxyalkyl substituted deferiprone exhibits extremely low cytotoxicity and excellent H2O2-induced oxidative stress protection effect. These results indicated that N-hydroxyalkyl substituted deferiprone has potential application prospects as chelating agents for Parkinson's disease chelation therapy strategy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873. https://doi.org/10.1038/nrn1537

    Article  CAS  PubMed  Google Scholar 

  2. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3(3):205–214. https://doi.org/10.1038/nrd1330

    Article  CAS  PubMed  Google Scholar 

  3. Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79(2):225–236. https://doi.org/10.1046/j.1471-4159.2001.00608.x

    Article  CAS  PubMed  Google Scholar 

  4. Sun Y, Pham AN, Waite TD (2016) Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines. J Neurochem 137(6):955–968. https://doi.org/10.1111/jnc.13615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun Y, Pham AN, Waite TD (2018) Mechanism underlying the effectiveness of deferiprone in alleviating Parkinson’s disease symptoms. ACS Chem Neurosci 9(5):1118–1127. https://doi.org/10.1021/acschemneuro.7b00478

    Article  CAS  PubMed  Google Scholar 

  6. Ward RJ, Dexter DT, Crichton RR (2015) Neurodegenerative diseases and therapeutic strategies using iron chelators. J Trace Elem Med Biol 31:267–273. https://doi.org/10.1016/j.jtemb.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  7. Kaur D, Andersen JK (2002) Ironing out Parkinson’s disease: is therapeutic treatment with iron chelators a real possibility? Aging Cell 1(1):17–21. https://doi.org/10.1046/j.1474-9728.2002.00001.x

    Article  CAS  PubMed  Google Scholar 

  8. Boddaert N, Le Quan Sang KH, Rötig A, Leroy-Willig A, Gallet S, Brunelle F, Sidi D, Thalabard J-C, Munnich A, Cabantchik ZI (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110(1):401–408. https://doi.org/10.1182/blood-2006-12-065433

    Article  CAS  PubMed  Google Scholar 

  9. Bolognin S, Drago D, Messori L, Zatta P (2009) Chelation therapy for neurodegenerative diseases. Med Res Rev 29(4):547–570. https://doi.org/10.1002/med.20148

    Article  CAS  PubMed  Google Scholar 

  10. Pardridge WM (2007) Blood–brain barrier delivery. Drug Discovery Today 12(1):54–61. https://doi.org/10.1016/j.drudis.2006.10.013

    Article  CAS  PubMed  Google Scholar 

  11. Tosato M, Marco VD (2019) Metal chelation therapy and Parkinson’s disease: a critical review on the thermodynamics of complex formation between relevant metal ions and promising or established drugs. Biomolecules 9(7):269. https://doi.org/10.3390/biom9070269

    Article  CAS  PubMed Central  Google Scholar 

  12. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1):3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  13. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1(1):55–68. https://doi.org/10.1021/cc9800071

    Article  CAS  PubMed  Google Scholar 

  14. Pardridge WM (2001) Brain drug targeting: the future of brain drug development. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Martin-Bastida A, Ward RJ, Newbould R, Piccini P, Sharp D, Kabba C, Patel MC, Spino M, Connelly J, Tricta F, Crichton RR, Dexter DT (2017) Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep 7(1):1398. https://doi.org/10.1038/s41598-017-01402-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh S, Epemolu RO, Dobbin PS, Tilbrook GS, Ellis BL, Damani LA, Hider RC (1992) Urinary metabolic profiles in human and rat of 1,2-dimethyl- and 1,2-diethyl-substituted 3-hydroxypyridin-4-ones. Drug Metab Dispos 20(2):256–261

    CAS  PubMed  Google Scholar 

  17. Huang X-P, Spino M, Thiessen JJ (2006) Transport kinetics of iron chelators and their chelates in caco-2 cells. Pharm Res 23(2):280–290. https://doi.org/10.1007/s11095-005-9258-5

    Article  CAS  PubMed  Google Scholar 

  18. Ma YM, Hider RC (2010) Design and synthesis of fluorine-substituted 3-hydroxypyridin-4-ones. Tetrahedron Lett 51(40):5230–5233. https://doi.org/10.1016/j.tetlet.2010.07.134

    Article  CAS  Google Scholar 

  19. Ma Y, Kong X, Chen Y-L, Hider RC (2014) Synthesis and characterizations of pyridazine-based iron chelators. Dalton Trans 43(45):17120–17128. https://doi.org/10.1039/C4DT02687J

    Article  CAS  PubMed  Google Scholar 

  20. Ma Y, Xie Y, Hider RC (2013) A novel fluorescence method for determination of pFe3+. Analyst 138(1):96–99. https://doi.org/10.1039/C2AN36186H

    Article  CAS  PubMed  Google Scholar 

  21. Xie YY, Lu Z, Kong XL, Zhou T, Bansal S, Hider R (2016) Systematic comparison of the mono-, dimethyl- and trimethyl 3-hydroxy-4(1H)-pyridones—attempted optimization of the orally active iron chelator, deferiprone. Eur J Med Chem 115:132–140. https://doi.org/10.1016/j.ejmech.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  22. Santos MA, Marques SM, Chaves S (2012) Hydroxypyridinones as “privileged” chelating structures for the design of medicinal drugs. Coord Chem Rev 256(1):240–259. https://doi.org/10.1016/j.ccr.2011.08.008

    Article  CAS  Google Scholar 

  23. Santos MA, Chaves S (2015) 3-hydroxypyridinone derivatives as metal-sequestering agents for therapeutic use. Future Med Chem 7(3):383–410. https://doi.org/10.4155/fmc.14.162

    Article  CAS  PubMed  Google Scholar 

  24. Chand K, Rajeshwari R, Candeias E, Cardoso SM, Chaves S, Santos MA (2018) Tacrine–deferiprone hybrids as multi-target-directed metal chelators against Alzheimer’s disease: a two-in-one drug. Metallomics 10(10):1460–1475. https://doi.org/10.1039/C8MT00143J

    Article  CAS  PubMed  Google Scholar 

  25. Guillemette C (2003) Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J 3(3):136–158. https://doi.org/10.1038/sj.tpj.6500171

    Article  CAS  PubMed  Google Scholar 

  26. Santos MA, Gama S, Gano L, Cantinho G, Farkas E (2004) A new bis(3-hydroxy-4-pyridinone)-IDA derivative as a potential therapeutic chelating agent. Synthesis, metal-complexation and biological assays. Dalton trans 21:3772–3781. https://doi.org/10.1039/B409357G

    Article  CAS  Google Scholar 

  27. Gans P, Sabatini A, Vacca A (1999) Determination of equilibrium constants from spectrophometric data obtained from solutions of known pH: the program pHab. Anal Chim 89(1–2):45–49. https://doi.org/10.1109/TKDE.2004.1277824

    Article  CAS  Google Scholar 

  28. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev 184(1):311–318. https://doi.org/10.1016/S0010-8545(98)00260-4

    Article  CAS  Google Scholar 

  29. Gans P, Sabatini A, Vacca A (1996) Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43(10):1739–1753. https://doi.org/10.1016/0039-9140(96)01958-3

    Article  CAS  PubMed  Google Scholar 

  30. Nurchi VM, Crisponi G, Pivetta T, Donatoni M, Remelli M (2008) Potentiometric, spectrophotometric and calorimetric study on iron(III) and copper(II) complexes with 1,2-dimethyl-3-hydroxy-4-pyridinone. J Inorg Biochem 102(4):684–692. https://doi.org/10.1016/j.jinorgbio.2007.10.012

    Article  CAS  PubMed  Google Scholar 

  31. Chaves S, Delgado R, Da Silva JJRF (1992) The stability of the metal complexes of cyclic tetra-aza tetra-acetic acids. Talanta 39(3):249–254. https://doi.org/10.1016/0039-9140(92)80028-C

    Article  CAS  PubMed  Google Scholar 

  32. Duffield JR, May PM, Williams DR (1984) Computer simulation of metal ion equilibria in biofluids. IV. plutonium speciation in human blood plasma and chelation therapy using polyaminopolycarboxylic acids. J Inorg Biochem 20(3):199–214. https://doi.org/10.1016/0162-0134(84)85019-9

    Article  CAS  PubMed  Google Scholar 

  33. Kullgren B, Jarvis EE, An DD, Abergel RJ (2013) Actinide chelation: biodistribution and in vivo complex stability of the targeted metal ions. Toxicol Mech Methods 23(1):18–26. https://doi.org/10.3109/15376516.2012.728641

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Wu S, Guan J, Chen L, Shi C, Wan J, Liu Y, Diwu J, Wang J, Wang S (2019) 3-hydroxy-2-pyrrolidinone as a potential bidentate ligand for in vivo chelation of uranyl with low cytotoxicity and moderate decorporation efficacy: a solution thermodynamics, structural chemistry, and in vivo uranyl removal survey. Inorg Chem 58(5):3349–3354. https://doi.org/10.1021/acs.inorgchem.8b03442

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Dai X, Shi C, Wan J, Silver MA, Zhang L, Chen L, Yi X, Chen B, Zhang D, Yang K, Diwu J, Wang J, Xu Y, Zhou R, Chai Z, Wang S (2019) A 3,2-hydroxypyridinone-based decorporation agent that removes uranium from bones in vivo. Nat Commun 10(1):2570. https://doi.org/10.1038/s41467-019-10276-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199–1200. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  37. Pyrzynska K, Pękal A (2013) Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Anal Methods 5(17):4288–4295. https://doi.org/10.1039/C3AY40367J

    Article  CAS  Google Scholar 

  38. Romano CS, Abadi K, Repetto V, Vojnov AA, Moreno S (2009) Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chem 115(2):456–461. https://doi.org/10.1016/j.foodchem.2008.12.029

    Article  CAS  Google Scholar 

  39. Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113(4):1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008

    Article  CAS  Google Scholar 

  40. Mishra K, Ojha H, Chaudhury NK (2012) Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem 130(4):1036–1043. https://doi.org/10.1016/j.foodchem.2011.07.127

    Article  CAS  Google Scholar 

  41. Foti MC, Daquino C, Geraci C (2004) Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH(*) radical in alcoholic solutions. J Org Chem 69(7):2309–2314. https://doi.org/10.1021/jo035758q

    Article  CAS  PubMed  Google Scholar 

  42. Cuvelier ME, Richard H, Berset C (1992) Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci Biotechnol Biochem 56(2):324–325. https://doi.org/10.1271/bbb.56.324

    Article  CAS  Google Scholar 

  43. Shahidi F, Wanasundara PK (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32(1):67–103. https://doi.org/10.1007/978-1-4899-1837-6_4

    Article  CAS  PubMed  Google Scholar 

  44. Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76(2):270–276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2%3c270::AID-JSFA945%3e3.0.CO;2-9

    Article  Google Scholar 

  45. Hasegawa M, Ogihara T, Tamai H, Hiroi M (2009) Hypothermic inhibition of apoptotic pathways for combined neurotoxicity of iron and ascorbic acid in differentiated PC12 cells: reduction of oxidative stress and maintenance of the glutathione redox state. Brain Res 1283:1–13. https://doi.org/10.1016/j.brainres.2009.06.016

    Article  CAS  PubMed  Google Scholar 

  46. Rai BL, Dekhordi LS, Khodr H, Jin Y, Liu Z, Hider RC (1998) Synthesis, physicochemical properties, and evaluation of N-substituted-2-alkyl-3-hydroxy-4(1H)-pyridinones. J Med Chem 41(18):3347–3359. https://doi.org/10.1021/jm9707784

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Heyan Huang (Analytical and Testing Center, Southwest University of Science and Technology) for nuclear paramagnetic resonance measurements.

Funding

The research was funded by the National Natural Science Foundation of China (grant number 51972278), the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (grant number 19fksy04), and the Natural Science Foundation of Southwest University of Science and Technology (grant number 18zx7136).

Author information

Authors and Affiliations

Authors

Contributions

QZ and RP conceived and designed the experiments; QZ, SF and YZ performed the experiments; QZ, and BJ analyzed the data; QZ and RP wrote and edited the manuscript.

Corresponding authors

Correspondence to Qingchun Zhang or Rufang Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3062 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Feng, S., Zhao, Y. et al. Design and synthesis of N-hydroxyalkyl substituted deferiprone: a kind of iron chelating agents for Parkinson's disease chelation therapy strategy. J Biol Inorg Chem 26, 467–478 (2021). https://doi.org/10.1007/s00775-021-01863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01863-x

Keywords

Navigation