The anti-cancer effect of series of strained photoactivatable Ru(II) polypyridyl complexes on non-small-cell lung cancer and triple negative breast cancer cells


Ruthenium complexes have been recently reported as potential chemotherapeutic agents that offer tumor selectivity and low tumor resistance. This study investigates the photochemistry and the effect of four strained photoactivatable polypyridyl ruthenium(II) complexes on non-small-cell lung cancer (A549) and triple negative breast cancer (MDA-MB-231) cells. All four ruthenium(II) complexes, [Ru(bpy)2dmbpy]Cl2 (C1) where (bpy = 2,2′-bipyridine and dmbpy = 6,6′-dimethyl-2,2′-bipyridine), [Ru(phen)2dmbpy]Cl2 (C2) where (phen = 1,10-phenanthroline), [Ru(dpphen)2dmbpy]Cl2 (C3) (where dpphen = 4,7-diphenyl-1,10-phenanthroline) and [Ru(BPS)2dmbpy]Na2 (C4) where (BPS = bathophenanthroline disulfonate) eject the dmbpy ligand upon activation by blue light. Determination of the octanol–water partition coefficient (log P) revealed that C3 was the only lipophilic complex (log P = 0.42). LC–MS/MS studies showed that C3 presented the highest cellular uptake. The cytotoxic effect of the complexes was evaluated with and without blue light activation using WST-1 kit. Data indicated that C3 exhibited the highest cytotoxicity after 72 h (MDA-MB-231, IC50 = 0.73 µM; A549, IC50 = 1.26 µM) of treatment. The phototoxicity indices of C3 were 6.56 and 4.64 for MDA-MB-230 and A549, respectively. Upon light activation, C3 caused significant ROS production and induced apoptosis in MDA-MB-231 cells as shown by flow cytometry. It also significantly increased Bax/Bcl2 ratio and PERK levels without affecting caspase-3 expression. C3 exhibited poor dark toxicity (IC50 = 74 μM) on rat mesenchymal stem cells (MSCs). In conclusion, the physical property of the complexes dictated by the variable ancillary ligands influenced cellular uptake and cytotoxicity. C3 may be considered a promising selective photoactivatable chemotherapeutic agent that induces ROS production and apoptosis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Desoize B (2004) Metals and metal compounds in cancer treatment. Anticancer Res 24(3a):1529–1544

    CAS  PubMed  Google Scholar 

  2. 2.

    Knoll JD, Turro C (2015) Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord Chem Rev 282–283:110–126.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ho GY, Woodward N, Coward JIG (2016) Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol 102:37–46.

    Article  PubMed  Google Scholar 

  4. 4.

    Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7(8):573–584.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Ott I, Gust R (2007) Non platinum metal complexes as anti-cancer drugs. Arch Pharm (Weinheim) 340(3):117–126.

    CAS  Article  Google Scholar 

  6. 6.

    Guo W et al (2013) Transferrin serves as a mediator to deliver organometallic ruthenium(II) anticancer complexes into cells. Inorg Chem 52(9):5328–5338.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Schluga P et al (2006) Redox behavior of tumor-inhibiting ruthenium(iii) complexes and effects of physiological reductants on their binding to GMP. Dalton Trans Camb Engl.

    Article  Google Scholar 

  8. 8.

    Mari C, Pierroz V, Ferrari S, Gasser G (2015) Combination of Ru(ii) complexes and light: new frontiers in cancer therapy. Chem Sci 6(5):2660–2686.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Fandzloch M, Dobrzańska L, Jędrzejewski T, Jezierska J, Wiśniewska J, Łakomska I (2019) Synthesis, structure and biological evaluation of ruthenium(III) complexes of triazolopyrimidines with anticancer properties. J Biol Inorg Chem 25(1):109–124.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Stacey OJ, Pope SJA (2013) New avenues in the design and potential application of metal complexes for photodynamic therapy. RSC Adv 3(48):25550.

    CAS  Article  Google Scholar 

  11. 11.

    Arenas Y, Monro S, Shi G, Mandel A, McFarland S, Lilge L (2013) Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers. Photodiagnosis Photodyn Ther 10(4):615–625.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Park W, Bae B, Na K (2016) A highly tumor-specific light-triggerable drug carrier responds to hypoxic tumor conditions for effective tumor treatment. Biomaterials 77:227–234.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Bonnet S (2018) Why develop photoactivated chemotherapy? Dalton Trans 47(31):10330–10343.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Farrer NJ, Salassa L, Sadler PJ (2009) Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans Camb Engl.

    Article  Google Scholar 

  15. 15.

    Mahnken RE, Billadeau MA, Nikonowicz EP, Morrison H (1992) Development of photo cis-platinum reagents. Reaction of cis-dichlorobis(1,10-phenanthroline)rhodium(III) with calf thymus DNA, nucleotides and nucleosides. J Am Chem Soc 114(24):9253–9265.

    CAS  Article  Google Scholar 

  16. 16.

    Durham B, Caspar JV, Nagle JK, Meyer TJ (1982) Photochemistry of tris(2,2’-bipyridine)ruthenium(2+) ion. J Am Chem Soc 104(18):4803–4810.

    CAS  Article  Google Scholar 

  17. 17.

    Campagna S, Puntoriero F, Nastasi F, Bergamini G, Balzani V (2007) Photochemistry and photophysics of coordination compounds: ruthenium. In: Balzani V, Campagna S (eds) Photochemistry and photoph. Springer, Berlin, pp 117–214

    Google Scholar 

  18. 18.

    Howerton BS, Heidary DK, Glazer EC (2012) Strained ruthenium complexes are potent light-activated anticancer agents. J Am Chem Soc 134(20):8324–8327.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A (1988) Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord Chem Rev 84:85–277.

    CAS  Article  Google Scholar 

  20. 20.

    Laemmel A-C, Collin J-P, Sauvage J-P (1999) Efficient and selective photochemical labilization of a given bidentate ligand in mixed ruthenium(II) complexes of the Ru(phen)2L2+ and Ru(bipy)2L2+ family (L = sterically hindering chelate). Eur J Inorg Chem 1999(3):383–386.;2-9

    Article  Google Scholar 

  21. 21.

    Mehanna S et al (2019) Enhanced cellular uptake and photochemotherapeutic potential of a lipophilic strained Ru(ii) polypyridyl complex. RSC Adv 9(30):17254–17265.

    CAS  Article  Google Scholar 

  22. 22.

    Mansour N et al (2018) Photoactivatable ruii complex bearing 2,9-diphenyl-1,10-phenanthroline: unusual photochemistry and significant potency on cisplatin-resistant cell lines. Eur J Inorg Chem 2018(22):2524–2532.

    CAS  Article  Google Scholar 

  23. 23.

    Liu C, Yu L, Liu Y, Li F, Zhou M (2011) NMR study on iridium(III) complexes for identifying disulfonate substituted bathophenanthroline regio-isomers. Magn Reson Chem 49(12):816–823.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Della Ciana L, Zanarini S, Perciaccante R, Marzocchi E, Valenti G (2010) Neutral and dianionic Ru(II) bathophenanthrolinedisulfonate complexes: a route to enhance electrochemiluminescence performance in aqueous media. J Phys Chem C 114(8):3653–3658.

    CAS  Article  Google Scholar 

  25. 25.

    Hackett JW, Turro C (1998) Luminescent Ru(phen)n(bps)3–n2n-4 complexes (n = 0–3) as probes of electrostatic and hydrophobic interactions with micellar media. Inorg Chem 37(8):2039–2046.

    CAS  Article  Google Scholar 

  26. 26.

    Cuello-Garibo J, Meijer MS, Bonnet S (2017) To cage or to be caged? The cytotoxic species in ruthenium-based photoactivated chemotherapy is not always the metal. Chem Commun 53(50):6768–6771.

    CAS  Article  Google Scholar 

  27. 27.

    Al Hageh C et al (2018) A long-lived cuprous bis-phenanthroline complex for the photodynamic therapy of cancer. Dalton Trans Camb Engl 47(14):4959–4967.

    CAS  Article  Google Scholar 

  28. 28.

    Mehanna S, Bodman-Smith K, Daher CF, Khnayzer RS (2020) Rapid quantification of ruthenium(ii) polypyridyl anti-cancer drugs using a selective ligand dissociation LC-MS/MS method. Anal Methods.

    Article  PubMed  Google Scholar 

  29. 29.

    Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research, Division on Earth and Life Studies, & National Research Council (2011) Guide for the care and use of laboratory animals (8th edn). National Academies Press

  30. 30.

    Smajilagić A, Aljičević M, Redžić A, Filipović S, Lagumdžija A (2013) Rat bone marrow stem cells isolation and culture as a bone formative experimental system. Bosn J Basic Med Sci 13(1):27–30.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hisamatsu Y, Suzuki N, Masum AA, Shibuya A, Abe R, Sato A, Tanuma SI, Aoki S (2017) Cationic amphiphilic tris-cyclometalated iridium(iii) complexes induce cancer cell death via interaction with Ca2+-calmodulin complex. Generic.

    Article  Google Scholar 

  32. 32.

    Xiang H, Chen H, Tham HP, Phua SZF, Liu J-G, Zhao Y (2017) Cyclometalated iridium(III)-complex-based micelles for glutathione-responsive targeted chemotherapy and photodynamic therapy. ACS Appl Mater Interfaces 9(33):27553–27562.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Gupta A, Mandal D, Ahmadibeni Y, Parang K, Bothun G (2011) Hydrophobicity drives the cellular uptake of short cationic peptide ligands. Eur Biophys J 40(6):727–736.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Sakagami K, Masuda T, Kawano K, Futaki S (2018) Importance of net hydrophobicity in the cellular uptake of all-hydrocarbon stapled peptides. Mol Pharm 15(3):1332–1340.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Piper K, Boyde A, Jones SJ (1995) Volumes of chick and rat osteoclasts cultured on glass. Calcif Tissue Int 56(5):382–389.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Tian N et al (2019) A nuclear permeable Ru(ii)-based photoactivated chemotherapeutic agent towards a series of cancer cells: in vitro and in vivo studies. Dalton Trans 48(19):6492–6500.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Azar DF, Audi H, Farhat S, El Sibai M, Abi-Habib R, Khnayzer RS (2017) Phototoxicity of strained Ru(II) complexes: is it the metal complex or the dissociating ligand? Dalton Trans 46(35):11529–11532

    CAS  Article  Google Scholar 

  38. 38.

    Loftus LM et al (2016) New RuII complex for dual activity: photoinduced ligand release and 1O2 production. Chem Eur J 22(11):3704–3708.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Negri LB, Martins TJ, da Silva RS, Hamblin MR (2019) Photobiomodulation combined with photodynamic therapy using ruthenium phthalocyanine complexes in A375 melanoma cells: effects of nitric oxide generation and ATP production. J Photochem Photobiol B 198:111564.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    El Khoury M et al (2020) Malva pseudolavatera leaf extract promotes ROS induction leading to apoptosis in acute myeloid leukemia cells in vitro. Cancers.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Lincoln R et al (2013) Exploitation of long-lived 3il excited states for metal-organic photodynamic therapy: verification in a metastatic melanoma model. J Am Chem Soc 135(45):17161–17175.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    McCain J et al (2019) Photophysical properties and photobiological activities of ruthenium(ii) complexes bearing π-expansive cyclometalating ligands with thienyl groups. Inorg Chem 58(16):10778–10790.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Xu L, Zhong N-J, Xie Y-Y, Huang H-L, Jiang G-B, Liu Y-J (2014) Synthesis, characterization, in vitro cytotoxicity, and apoptosis-inducing properties of ruthenium(ii) complexes. PLoS ONE 9(5):e96082.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Zhang P, Chen J, Liang Y (2010) DNA binding, cytotoxicity, and apoptotic-inducing activity of ruthenium(II) polypyridyl complex. Acta Biochim Biophys Sin 42(7):440–449.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Jiang G-B et al (2020a) New ruthenium polypyridyl complexes functionalized with fluorine atom or furan: synthesis, DNA-binding, cytotoxicity and antitumor mechanism studies. Spectrochim Acta A Mol Biomol Spectrosc 227:117534.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Li Y et al (2019) Polypyridyl ruthenium(II) complex-induced mitochondrial membrane potential dissipation activates DNA damage-mediated apoptosis to inhibit liver cancer. Eur J Med Chem 164:282–291.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Jiang G-B et al (2020b) Development of four ruthenium polypyridyl complexes as antitumor agents: design, biological evaluation and mechanism investigation. J Inorg Biochem 208:111104.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592.

    Article  PubMed  Google Scholar 

  49. 49.

    Łomzik M, Mazuryk O, Rutkowska-Zbik D, Stochel G, Gros PC, Brindell M (2017) New ruthenium compounds bearing semicarbazone 2-formylopyridine moiety: Playing with auxiliary ligands for tuning the mechanism of biological activity. J Inorg Biochem 175:80–91.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8(8):1168–1175.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Snezhkina AV et al (2019) ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


This work was funded by the Lebanese American University and the Lebanese National Council for Scientific Research (Ref: 02-01-18).


This work was funded by the School Research and Development Council at the Lebanese American University and the Lebanese National Council for Scientific Research (Ref: 05-06-14).

Author information



Corresponding authors

Correspondence to Rony S. Khnayzer or Costantine F. Daher.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 195 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fayad, C., Audi, H., Khnayzer, R.S. et al. The anti-cancer effect of series of strained photoactivatable Ru(II) polypyridyl complexes on non-small-cell lung cancer and triple negative breast cancer cells. J Biol Inorg Chem (2020).

Download citation


  • Polypyridyl ruthenium(II)
  • Photoactivated chemotherapy
  • Cytotoxicity
  • Apoptosis
  • MDA-MB-231
  • A549