Skip to main content
Log in

Molecular dynamics simulation of non-covalent interactions between polynuclear platinum(II) complexes and DNA

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Several studies with substitution-inert polynuclear platinum(II) complexes (SI-PPC) have been carried out in recent years due to the form of DNA binding presented by these compounds. This form of bonding is achieved by molecular recognition through the formation of non-covalent structures, commonly called phosphate clamps and forks, which generate small extensions of the major and minor grooves. In this work, we use molecular dynamics simulations (MD) to study the formation of these cyclical structures between six different SI-PPCs and a double DNA dodecamer, here called 24_bp_DNA. The results showed the influence of the complex expressed on the number of phosphate clamps and forks formed. Based on the conformational characterization of the DNA fragment, we show that the studied SI-PPCs interact preferentially in the minor groove, causing groove spanning, except for two of them, Monoplatin and AH44. The phosphates of C–G pairs are the main sites for such non-covalent interactions. The Gibbs interaction energy of solvated species points out to AH78P, AH78H, and TriplatinNC as the most probable ones when coupled with DNA. As far as we know, this work is the very first one related to SI-PPCs which brings MD simulations and a complete analysis of the non-covalent interactions with a double DNA dodecamer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320. https://doi.org/10.1038/nrd1691

    Article  CAS  PubMed  Google Scholar 

  2. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498. https://doi.org/10.1021/cr980421n

    Article  CAS  PubMed  Google Scholar 

  3. Johnstone TC, Suntharalingam K, Lippard SJ (2016) The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 116:3436–3486. https://doi.org/10.1021/acs.chemrev.5b00597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Billecke C, Finniss S, Tahash L et al (2006) Polynuclear platinum anticancer drugs are more potent than cisplatin and induce cell cycle arrest in glioma1. Neuro Oncol 8:215–226. https://doi.org/10.1215/15228517-2006-004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Farrell N, Qu Y, Bierbach U et al (2006) Structure-activity relationships within di- and trinuclear platinum phase-i clinical anticancer agents. Cisplatin Chem Biochem A Lead Anticancer Drug. https://doi.org/10.1002/9783906390420.ch19

    Article  Google Scholar 

  6. Perego P, Caserini C, Gatti L et al (1999) A novel trinuclear platinum complex overcomes cisplatin resistance an osteosarcoma cell system. Mol Pharmacol 55:528–534

    CAS  PubMed  Google Scholar 

  7. Farrell NP (2015) Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chem Soc Rev 44:8773–8785. https://doi.org/10.1039/c5cs00201j

    Article  CAS  PubMed  Google Scholar 

  8. Ruhayel RA, Moniodis JJ, Yang X et al (2009) Factors affecting DNA–DNA interstrand cross-links in the antiparallel 3′–3′ sense: a comparison with the 5′–5′ directional isomer. Chem A Eur J 15:9365–9374. https://doi.org/10.1002/chem.200900958

    Article  CAS  Google Scholar 

  9. Montero EI, Benedetti BT, Mangrum JB et al (2007) Pre-association of polynuclear platinum anticancer agents on a protein, human serum albumin. Implications for drug design. Dalton Trans. https://doi.org/10.1039/b708433c

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu Q, Qu Y, Van Antwerpen R, Farrell N (2006) Mechanism of the membrane interaction of polynuclear platinum anticancer agents. Implications for cellular uptake. Biochemistry 45:4248–4256. https://doi.org/10.1021/bi052517z

    Article  CAS  PubMed  Google Scholar 

  11. Qu Y, Harris A, Hegmans A et al (2004) Synthesis and DNA conformational changes of non-covalent polynuclear platinum complexes. J Inorg Biochem 98:1591–1598. https://doi.org/10.1016/j.jinorgbio.2004.07.012

    Article  CAS  PubMed  Google Scholar 

  12. Harris AL, Ryan JJ, Farrell N (2006) Biological consequences of trinuclear platinum complexes. Mol Pharmacol 69:666–672. https://doi.org/10.1124/mol.105.018762.Harris

    Article  CAS  PubMed  Google Scholar 

  13. Peterson EJ, Menon VR, Gatti L et al (2015) Nucleolar targeting by platinum: P53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm 12:287–297. https://doi.org/10.1021/mp5006867

    Article  CAS  PubMed  Google Scholar 

  14. Benedetti BT, Peterson EJ, Kabolizadeh P et al (2011) Effects of noncovalent platinum drug-protein interactions on drug efficacy: Use of fluorescent conjugates as probes for drug metabolism. Mol Pharm 8:940–948. https://doi.org/10.1021/mp2000583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Komeda S, Moulaei T, Woods KK et al (2006) A third mode of DNA binding: phosphate clamps by a polynuclear platinum complex. J Am Chem Soc 128:16092–16103. https://doi.org/10.1021/ja062851y

    Article  CAS  PubMed  Google Scholar 

  16. Komeda S, Moulaei T, Chikuma M et al (2011) The phosphate clamp: a small and independent motif for nucleic acid backbone recognition. Nucleic Acids Res 39:325–336. https://doi.org/10.1093/nar/gkq723

    Article  CAS  PubMed  Google Scholar 

  17. Harris AL, Yang X, Hegmans A et al (2005) Synthesis, characterization, and cytotoxicity of a novel highly charged trinuclear platinum compound. Enhancement of cellular uptake with charge. Inorg Chem 44:9598–9600. https://doi.org/10.1021/ic051390z

    Article  CAS  PubMed  Google Scholar 

  18. Prisecaru A, Molphy Z, Kipping RG et al (2014) The phosphate clamp: sequence selective nucleic acid binding profiles and conformational induction of endonuclease inhibition by cationic triplatin complexes. Nucleic Acids Res 42:13474–13487. https://doi.org/10.1093/nar/gku1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malina J, Farrell NP, Brabec V (2014) Substitution-inert trinuclear platinum complexes efficiently condense/aggregate nucleic acids and inhibit enzymatic activity. Angew Chem Int Ed 53:12812–12816. https://doi.org/10.1002/anie.201408012

    Article  CAS  Google Scholar 

  20. Malina J, Farrell NP, Brabec V (2014) DNA condensing effects and sequence selectivity of DNA binding of antitumor noncovalent polynuclear platinum complexes. Inorg Chem 53:1662–1671. https://doi.org/10.1021/ic402796k

    Article  CAS  PubMed  Google Scholar 

  21. Malina J, Farrell NP, Brabec V (2019) Substitution-inert polynuclear platinum complexes act as potent inducers of condensation/aggregation of short single- and double-stranded DNA and RNA oligonucleotides. Chem A Eur J 25:2995–2999. https://doi.org/10.1002/chem.201806276

    Article  CAS  Google Scholar 

  22. Malina J, Čechová K, Farrell NP, Brabec V (2019) Substitution-inert polynuclear platinum complexes with dangling amines: condensation/aggregation of nucleic acids and inhibition of DNA-related enzymatic activities. Inorg Chem 58:6804–6810. https://doi.org/10.1021/acs.inorgchem.9b00254

    Article  CAS  PubMed  Google Scholar 

  23. Malina J, Farrell NP, Brabec V (2018) Substitution-inert polynuclear platinum complexes that inhibit the activity of DNA polymerase in triplex-forming templates. Angew Chem Int Ed 57:8535–8539. https://doi.org/10.1002/anie.201803448

    Article  CAS  Google Scholar 

  24. Brabec V, Hrabina O, Kasparkova J (2017) Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 351:2–31. https://doi.org/10.1016/j.ccr.2017.04.013

    Article  CAS  Google Scholar 

  25. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  26. Hehre WJ, Ditchfield K, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  27. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. https://doi.org/10.1063/1.448799

    Article  CAS  Google Scholar 

  28. Wang J, Wolf RM, Caldwell JW et al (2004) 20035_Ftp. J Comput Chem 56531:1157–1174

    Article  Google Scholar 

  29. Zheng S, Tang Q, He J et al (2016) VFFDT: A New software for preparing amber force field parameters for metal-containing molecular systems. J Chem Inf Model 56:811–818. https://doi.org/10.1021/acs.jcim.5b00687

    Article  CAS  PubMed  Google Scholar 

  30. Seminario JM (1996) Calculation of intramolecular force fields from second-derivative tensors. Int J Quantum Chem 60:1271–1277. https://doi.org/10.1002/(sici)1097-461x(1996)60:7<1271:aid-qua8>3.3.co;2-j

    Article  Google Scholar 

  31. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to Isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041. https://doi.org/10.1063/1.474659

    Article  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA., Peralta Jr. JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A., Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  33. Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23:69–89. https://doi.org/10.1103/RevModPhys.23.69

    Article  CAS  Google Scholar 

  34. Yao S, Plastaras JP, Marzilli LG (1994) A molecular mechanics AMBER-type force field for modeling platinum complexes of guanine derivatives. Inorg Chem 33:6061–6077. https://doi.org/10.1021/ic00104a015

    Article  CAS  Google Scholar 

  35. Mills M, Orr B, Banaszak Holl MM, Andricioaei I (2010) Microscopic basis for the mesoscopic extensibility of dendrimer-compacted DNA. Biophys J 98:834–842. https://doi.org/10.1016/j.bpj.2009.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu S, Larson RG (2014) Monte-Carlo simulations of PAMAM dendrimer–DNA interactions. Soft Matter 10:5325–5336. https://doi.org/10.1039/c4sm00452c

    Article  CAS  PubMed  Google Scholar 

  37. Svozil D, Šponer JE, Marchan I et al (2008) Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids. J Phys Chem B 112:8188–8197. https://doi.org/10.1021/jp801245h

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez G (2013) Comparison of multiple amber force fields and development of improved protein backbone parameters. El Sist argentino innovación Inst Empres y redes El desafío la creación y apropiación Conoc 725:712–725. https://doi.org/10.1002/prot

    Article  Google Scholar 

  39. Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, Kollman PA (2016) AMBER 2016. University of California, San Francisco

    Google Scholar 

  40. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  41. Arfken GB, Weber HJ (1985) Mathematical methods for physicists. Academic Press, Ohio

    Google Scholar 

  42. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand (1934) 49:409. https://doi.org/10.6028/jres.049.044

    Article  Google Scholar 

  43. Uberuaga BP, Anghel M, Voter AF (2004) Synchronization of trajectories in canonical molecular-dynamics simulations: observation, explanation, and exploitation. J Chem Phys 120:6363–6374. https://doi.org/10.1063/1.1667473

    Article  CAS  PubMed  Google Scholar 

  44. Berendsen HJC, Postma JPM, Van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  45. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  46. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095. https://doi.org/10.1021/ct400341p

    Article  CAS  PubMed  Google Scholar 

  47. Barroso ED (2012) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Google Scholar 

  48. Komeda S, Qu Y, Mangrum JB et al (2016) The phosphate clamp as recognition motif in platinum–DNA interactions. Inorg Chim Acta 452:25–33. https://doi.org/10.1016/j.ica.2016.04.052

    Article  CAS  Google Scholar 

  49. El Hassan MA, Calladine CR (1998) Two distinct modes of protein-induced bending in DNA. J Mol Biol 282:331–343. https://doi.org/10.1006/jmbi.1998.1994

    Article  PubMed  Google Scholar 

  50. Dickerson RE, Drew HR (1981) Kinematic model for B-DNA. Proc Natl Acad Sci USA 78:7318–7322. https://doi.org/10.1073/pnas.78.12.7318

    Article  CAS  PubMed  Google Scholar 

  51. Dickerson RE (1992) DNA structure from A to Z. Methods Enzymol 211:67–111. https://doi.org/10.1016/0076-6879(92)11007-6

    Article  CAS  PubMed  Google Scholar 

  52. Calladine CR (1982) Mechanics of sequence-dependent stacking of bases in B-DNA. J Mol Biol 161:343–352. https://doi.org/10.1016/0022-2836(82)90157-7

    Article  CAS  PubMed  Google Scholar 

  53. Miller BR, McGee TD, Swails JM et al (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321. https://doi.org/10.1021/ct300418h

    Article  CAS  PubMed  Google Scholar 

  54. Schlitter J (1993) Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett 215:617–621. https://doi.org/10.1016/0009-2614(93)89366-P

    Article  CAS  Google Scholar 

  55. Brooks BR, Janežič D, Karplus M (1995) Harmonic analysis of large systems. I. Methodology. J Comput Chem 16:1522–1542. https://doi.org/10.1002/jcc.540161209

    Article  CAS  Google Scholar 

  56. Rosa NMP, Ferreira FH, do C, Farrell NP, Costa LAS, (2019) TriplatinNC and biomolecules: building models based on non-covalent interactions. Front Chem 7:1–12. https://doi.org/10.3389/fchem.2019.00307

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Brazilian funding agencies CAPES, CNPq for the financial support, and FAPEMIG (Project APQ-00591-15) that allowed the purchase of the Nvidia graphics processing unit (GPU) used to speed up our MD simulations. LASC would like to acknowledge CNPq for the research Grant (307887/2018-9); LASC is also member of the Rede Mineira de Química (RQ-MG). NMPR would like to thank CAPES for her Ph.D. scholarship. The authors would like to thank Prof. H. F. Dos Santos (NEQC-UFJF) for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NMPR is Ph.D. at NEQC-UFJF. This work is part of her thesis and she was responsible for all DFT calculations, MD simulations, and writing this manuscript; JAFA was member of NEQC where he got the Master’s degree. He was also responsible for MD simulations. LASC is co-head of the NEQC and Nathália’s and Júlio’s supervisor. He was also responsible for the analysis and careful reading of the manuscript.

Corresponding author

Correspondence to Luiz Antônio S. Costa.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, N.M.P., Arvellos, J.A.F. & Costa, L.A.S. Molecular dynamics simulation of non-covalent interactions between polynuclear platinum(II) complexes and DNA. J Biol Inorg Chem 25, 963–978 (2020). https://doi.org/10.1007/s00775-020-01817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01817-9

Keywords

Navigation