Skip to main content
Log in

Development of an improved Amplex Red peroxidation activity assay for screening cytochrome P450 variants and identification of a novel mutant of the thermophilic CYP119

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Biocatalysts are increasingly utilized in the synthesis of drugs and agrochemicals as an alternative to chemical catalysis. They are preferred in the synthesis of enantiopure products due to their high regioselectivity and enantioselectivity. Cytochrome P450 (P450) oxygenases are valuable biocatalysts, since they catalyze the oxidation of carbon–hydrogen bonds with high efficiency and selectivity. However, practical use of P450s is limited due to their need for expensive cofactors and electron transport partners. P450s can employ hydrogen peroxide (H2O2) as an oxygen and electron donor, but the reaction with H2O2 is inefficient. The development of P450s that can use H2O2 will expand their applications. Here, an assay that utilizes Amplex Red peroxidation, to rapidly screen H2O2-dependent activity of P450 mutants in cell lysate was developed. This assay was employed to identify mutants of CYP119, a thermophilic P450 from Sulfolobus acidocaldarius, with increased peroxidation activity. A mutant library of CYP119 containing substitutions in the heme active site was constructed via combinatorial active-site saturation test and screened for improved activity. Screening of 158 colonies led to five mutants with higher activity. Among improved variants, T213R/T214I was characterized. T213R/T214I exhibited fivefold higher kcat for Amplex Red peroxidation and twofold higher kcat for styrene epoxidation. T213R/T214I showed higher stability towards heme degradation by H2O2. While the Km for H2O2 and styrene were not altered by the mutation, a fourfold decrease in the affinity for another substrate, lauric acid, was observed. In conclusion, Amplex Red peroxidation screening of CYP119 mutants yielded enzymes with increased peroxide-dependent activity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

P450:

Cytochrome P450

HRP:

Horseradish peroxidase

WT:

Wild type

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

NAD(P)H:

Nicotinamide adenine dinucleotide phosphate

CAST:

Combinatorial active-site saturation test

PMSF:

Phenylmethylsulfonyl fluoride

EDTA:

Ethylenediaminetetraacetic acid

DMSO:

Dimethyl sulfoxide

TBHP:

Tert-butyl hydroperoxide

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

RCSB PDB:

The Research Collaboratory for Structural Bioinformatics Protein Data Bank

PDB ID:

Protein data bank identity

REU:

Rosetta energy unit

References

  1. Denard CA, Ren H, Zhao H (2015) Improving and repurposing biocatalysts via directed evolution. Curr Opin Chem Biol 25:55–64

    Article  CAS  PubMed  Google Scholar 

  2. McLean KJ et al (2015) Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum. Proc Natl Acad Sci 112(9):2847–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bracco P, Janssen DB, Schallmey A (2013) Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microb Cell Fact 12(1):95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Duport C et al (1998) Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nat Biotechnol 16(2):186–189

    Article  CAS  PubMed  Google Scholar 

  5. Szczebara FM et al (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21(2):143–149

    Article  CAS  PubMed  Google Scholar 

  6. Hrycay EG, Bandiera SM (2012) The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch Biochem Biophys 522(2):71–89

    Article  CAS  PubMed  Google Scholar 

  7. Shoji O, Watanabe Y (2014) Peroxygenase reactions catalyzed by cytochromes P450. J Biol Inorg Chem 19(4–5):529–539

    Article  CAS  PubMed  Google Scholar 

  8. Lee JW et al (2011) Microbial production of building block chemicals and polymers. Curr Opin Biotechnol 22(6):758–767

    Article  CAS  PubMed  Google Scholar 

  9. Joo H, Lin Z, Arnold FH (1999) Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399(6737):670–673

    Article  CAS  PubMed  Google Scholar 

  10. Matsuura K et al (2004) Structural and functional characterization of “laboratory evolved” cytochrome P450cam mutants showing enhanced naphthalene oxygenation activity. Biochem Biophys Res Commun 323(4):1209–1215

    Article  CAS  PubMed  Google Scholar 

  11. Koo LS et al (2000) The active site of the thermophilic CYP119 from Sulfolobus solfataricus. J Biol Chem 275(19):14112–14123

    Article  CAS  PubMed  Google Scholar 

  12. Brock TD et al (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie 84(1):54–68

    Article  CAS  PubMed  Google Scholar 

  13. Yano JK et al (2000) Crystal structure of a thermophilic cytochrome P450 from the archaeon Sulfolobus solfataricus. J Biol Chem 275(40):31086–31092

    Article  CAS  PubMed  Google Scholar 

  14. Lim YR et al (2010) Regioselective oxidation of lauric acid by CYP119, an orphan cytochrome P450 from Sulfolobus acidocaldarius. J Microbiol Biotechnol 20(3):574–578

    CAS  PubMed  Google Scholar 

  15. Rabe KS, Kiko K, Niemeyer CM (2008) Characterization of the peroxidase activity of CYP119, a thermostable P450 from Sulfolobus acidocaldarius. ChemBioChem 9(3):420–425

    Article  CAS  PubMed  Google Scholar 

  16. Reetz MT et al (2005) Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem Int Ed 44(27):4192–4196

    Article  CAS  Google Scholar 

  17. Rabe KS et al (2009) Screening for cytochrome p450 reactivity by harnessing catalase as reporter enzyme. ChemBioChem 10(4):751–757

    Article  CAS  PubMed  Google Scholar 

  18. Aslantas Y, Surmeli NB (2019) Effects of N-terminal and C-terminal polyhistidine tag on the stability and function of the thermophilic P450 CYP119. Bioinorg Chem Appl 2019:8080697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ivanec-Goranina R, Kulys J (2008) Kinetic study of peroxidase-catalyzed oxidation of 1-hydroxypyrene. Development of a nanomolar hydrogen peroxide detection system. Central Eur J Biol 3(3):224

    CAS  Google Scholar 

  20. Mishin V et al (2010) Application of the Amplex red/horseradish peroxidase assay to measure hydrogen peroxide generation by recombinant microsomal enzymes. Free Radic Biol Med 48(11):1485–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao B, Summers FA, Mason RP (2012) Photooxidation of Amplex Red to resorufin: implications of exposing the Amplex Red assay to light. Free Radic Biol Med 53(5):1080–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suzuki R, Hirakawa H, Nagamune T (2014) Electron donation to an archaeal cytochrome P450 is enhanced by PCNA-mediated selective complex formation with foreign redox proteins. Biotechnol J 9(12):1573–1581

    Article  CAS  PubMed  Google Scholar 

  23. Koo LS et al (2002) Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119. J Am Chem Soc 124(20):5684–5691

    Article  CAS  PubMed  Google Scholar 

  24. Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26(5):689–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  26. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18(20):6097–6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McLean MA et al (1998) Characterization of a cytochrome P450 from the acidothermophilic Archaea Sulfolobus solfataricus. Biochem Biophys Res Commun 252(1):166–172

    Article  CAS  PubMed  Google Scholar 

  28. Misura KM et al (2006) Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc Natl Acad Sci 103(14):5361–5366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou M et al (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253(2):162–168

    Article  CAS  PubMed  Google Scholar 

  30. Rabe KS et al (2010) Peroxidase activity of bacterial cytochrome P450 enzymes: modulation by fatty acids and organic solvents. Biotechnol J 5(8):891–899

    Article  CAS  PubMed  Google Scholar 

  31. Towne V et al (2004) Complexities in horseradish peroxidase-catalyzed oxidation of dihydroxyphenoxazine derivatives: appropriate ranges for pH values and hydrogen peroxide concentrations in quantitative analysis. Anal Biochem 334(2):290–296

    Article  CAS  PubMed  Google Scholar 

  32. Shoji O et al (2016) A substrate-binding-state mimic of H2O2-dependent cytochrome P450 produced by one-point mutagenesis and peroxygenation of non-native substrates. Catal Sci Technol 6:5806–5811

    Article  CAS  Google Scholar 

  33. Lee DS et al (2003) Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies. J Biol Chem 278(11):9761–9767

    Article  CAS  PubMed  Google Scholar 

  34. Poulos TL (2014) Heme enzyme structure and function. Chem Rev 114(7):3919–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey [TUBİTAK, 116Z380]. We thank Ali Oğuz Büyükkileci for his help with the HPLC analysis and Çağlar Karakaya for allowing access to ultrasonicator instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Basak Surmeli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Başlar, M.S., Sakallı, T., Güralp, G. et al. Development of an improved Amplex Red peroxidation activity assay for screening cytochrome P450 variants and identification of a novel mutant of the thermophilic CYP119. J Biol Inorg Chem 25, 949–962 (2020). https://doi.org/10.1007/s00775-020-01816-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01816-w

Keywords

Navigation