Skip to main content

Advertisement

Log in

Mitochondria-targeted phosphorescent cyclometalated iridium(III) complexes: synthesis, characterization, and anticancer properties

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cyclometalated iridium(III) complexes represent a promising approach to developing new anticancer metallodrugs. In this work, three phosphorescent cyclometalated iridium(III) complexes Ir1–Ir3 have been explored as mitochondria-targeted anticancer agents. All three complexes display higher antiproliferative activity than cisplatin against the cancer cells screened, and with the IC50 values ranging from 0.23 to 5.6 μM. Colocalization studies showed that these complexes are mainly localized in the mitochondria. Mechanism studies show that these complexes exert their anticancer efficacy through initiating a series of events related to mitochondrial dysfunction, including depolarization of mitochondrial membrane potential (MMP), elevation of intracellular reactive oxygen species (ROS) levels, and induction of apoptosis.

Graphic abstract

Mitochondria-targted cyclometalated iridium complexes induce apoptosis through depolarized mitochondria, elevation of intracellular ROS and activated caspase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ (2015) He J (2016) Cancer statistics in China. CA Cancer J Clin 66(2):115–132. https://doi.org/10.3322/caac.21338

    Article  CAS  Google Scholar 

  2. Jung YW, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107(5):1387–1407. https://doi.org/10.1021/cr068207j

    Article  CAS  PubMed  Google Scholar 

  3. Hartinger CG, Dyson PJ (2009) Bioorganometallic chemistry–from teaching paradigms to medicinal applications. Chem Soc Rev 38(2):391–401. https://doi.org/10.1039/b707077m

    Article  CAS  PubMed  Google Scholar 

  4. Allardyce CS, Dyson PJ (2016) Metal-based drugs that break the rules. Dalton Trans 45(8):3201–3209. https://doi.org/10.1039/c5dt03919c

    Article  CAS  PubMed  Google Scholar 

  5. Holmes D (2015) The problem with platinum. Nature 527(7579):S218–219. https://doi.org/10.1038/527S218a

    Article  CAS  PubMed  Google Scholar 

  6. Venkatesh V, Berrocal-Martin R, Wedge CJ, Romero-Canelon I, Sanchez-Cano C, Song JI, Coverdale JPC, Zhang P, Clarkson GJ, Habtemariam A, Magennis SW, Deeth RJ, Sadler PJ (2017) Mitochondria-targeted spin-labelled luminescent iridium anticancer complexes. Chem Sci 8(12):8271–8278. https://doi.org/10.1039/c7sc03216a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leung CH, Zhong HJ, Chan DSH, Ma DL (2013) Bioactive iridium and rhodium complexes as therapeutic agents. Coord Chem Rev 257(11–12):1764–1776. https://doi.org/10.1016/j.ccr.2013.01.034

    Article  CAS  Google Scholar 

  8. Qiu KQ, Chen Y, Rees TW, Ji LN, Chao H (2019) Organelle-targeting metal complexes: from molecular design to bio-applications. Coord Chem Rev 378:66–86. https://doi.org/10.1016/j.ccr.2017.10.022

    Article  CAS  Google Scholar 

  9. Qiu KQ, Zhu HY, Rees TW, Ji LN, Zhang QL, Chao H (2019) Recent advances in lysosome-targeting luminescent transition metal complexes. Coord Chem Rev 398:113010. https://doi.org/10.1016/j.ccr.2019.07.007

    Article  CAS  Google Scholar 

  10. Liu Z, Sadler PJ (2014) Organoiridium complexes: anticancer agents and catalysts. Acc Chem Res 47(4):1174–1185. https://doi.org/10.1021/ar400266c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guan R, Chen Y, Zeng L, Rees TW, Jin C, Huang J, Chen ZS, Ji L, Chao H (2018) Oncosis-inducing cyclometalated iridium(III) complexes. Chem Sci 9(23):5183–5190. https://doi.org/10.1039/c8sc01142g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li SP, Lau CT, Louie MW, Lam YW, Cheng SH, Lo KK (2013) Mitochondria-targeting cyclometalated iridium(III)-PEG complexes with tunable photodynamic activity. Biomaterials 34(30):7519–7532. https://doi.org/10.1016/j.biomaterials.2013.06.028

    Article  CAS  PubMed  Google Scholar 

  13. Soldevila-Barreda JJ, Romero-Canelon I, Habtemariam A, Sadler PJ (2015) Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat Commun 6:6582. https://doi.org/10.1038/ncomms7582

    Article  CAS  PubMed  Google Scholar 

  14. Huang HY, Banerjee S, Qiu KQ, Zhang PY, Blacque O, Malcomson T, Paterson MJ, Clarkson GJ, Staniforth M, Stavros VG, Gasser G, Chao H, Sadler PJ (2019) Targeted photoredox catalysis in cancer cells. Nat Chem 11(11):1041–1048. https://doi.org/10.1038/s41557-019-0328-4

    Article  CAS  PubMed  Google Scholar 

  15. Liu Z, Romero-Canelon I, Qamar B, Hearn JM, Habtemariam A, Barry NPE, Pizarro AM, Clarkson GJ, Sadler PJ (2014) The potent oxidant anticancer activity of organoiridium catalysts. Angew Chem Int Ed 53(15):3941–3946. https://doi.org/10.1002/anie.201311161

    Article  CAS  Google Scholar 

  16. Wilbuer A, Vlecken DH, Schmitz DJ, Kraling K, Harms K, Bagowski CP, Meggers E (2010) Iridium complex with antiangiogenic properties. Angew Chem Int Ed 49(22):3839–3942. https://doi.org/10.1002/anie.201000682

    Article  CAS  Google Scholar 

  17. Liu LJ, Wang W, Huang SY, Hong Y, Li G, Lin S, Tian J, Cai Z, Wang HD, Ma DL, Leung CH (2017) Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium(III) metal-based compound. Chem Sci 8(7):4756–4763. https://doi.org/10.1039/c7sc00311k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao JJ, Tan CP, Chen MH, Wu N, Yao DY, Liu XG, Ji LN, Mao ZW (2017) Targeting cancer cell metabolism with mitochondria-immobilized phosphorescent cyclometalated iridium(III) complexes. Chem Sci 8(1):631–640. https://doi.org/10.1039/c6sc02901a

    Article  CAS  PubMed  Google Scholar 

  19. Ye RR, Tan CP, Ji LN, Mao ZW (2016) Coumarin-appended phosphorescent cyclometalated iridium(III) complexes as mitochondria-targeted theranostic anticancer agents. Dalton Trans 45(33):13042–13051. https://doi.org/10.1039/c6dt00601a

    Article  CAS  PubMed  Google Scholar 

  20. Cao JJ, Zheng Y, Wu XW, Tan CP, Chen MH, Wu N, Ji LN, Mao ZW (2019) Anticancer cyclometalated iridium(III) complexes with planar ligands: mitochondrial DNA damage and metabolism disturbance. J Med Chem 62(7):3311–3322. https://doi.org/10.1021/acs.jmedchem.8b01704

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Liu B, Lu XR, Li MF, Ji LN, Mao ZW (2017) Cyclometalated iridium(III) N-heterocyclic carbene complexes as potential mitochondrial anticancer and photodynamic agents. Dalton Trans 46(34):11363–11371. https://doi.org/10.1039/c7dt01903c

    Article  CAS  PubMed  Google Scholar 

  22. He L, Wang KN, Zheng Y, Cao JJ, Zhang MF, Tan CP, Ji LN, Mao ZW (2018) Cyclometalated iridium(III) complexes induce mitochondria-derived paraptotic cell death and inhibit tumor growth in vivo. Dalton Trans 47(20):6942–6953. https://doi.org/10.1039/c8dt00783g

    Article  CAS  PubMed  Google Scholar 

  23. He L, Tan CP, Ye RR, Zhao YZ, Liu YH, Zhao Q, Ji LN, Mao ZW (2014) Theranostic iridium(III) complexes as one- and two-photon phosphorescent trackers to monitor autophagic lysosomes. Angew Chem Int Ed 53(45):12137–12141. https://doi.org/10.1002/anie.201407468

    Article  CAS  Google Scholar 

  24. Chen MH, Wang FX, Cao JJ, Tan CP, Ji LN, Mao ZW (2017) Light-up mitophagy in live cells with dual-functional theranostic phosphorescent iridium(III) complexes. ACS Appl Mater Interfaces 9(15):13304–13314. https://doi.org/10.1021/acsami.7b01735

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Wang KN, He L, Ji LN, Mao ZW (2019) Synthesis, photophysical and anticancer properties of mitochondria-targeted phosphorescent cyclometalated iridium(III) N-heterocyclic carbene complexes. J Inorg Biochem 205:110976. https://doi.org/10.1016/j.jinorgbio.2019.110976

    Article  CAS  PubMed  Google Scholar 

  26. He L, Pan ZY, Qin WW, Li Y, Tan CP, Mao ZW (2019) Impairment of the autophagy-related lysosomal degradation pathway by an anticancer rhenium(i) complex. Dalton Trans 48(13):4398–4404. https://doi.org/10.1039/c9dt00322c

    Article  CAS  PubMed  Google Scholar 

  27. Woo H, Cho S, Han Y, Chae WS, Ahn DR, You Y, Nam W (2013) Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors. J Am Chem Soc 135(12):4771–4787. https://doi.org/10.1021/ja3123202

    Article  CAS  PubMed  Google Scholar 

  28. Zhang KY, Gao P, Sun G, Zhang T, Li X, Liu S, Zhao Q, Lo KK, Huang W (2018) Dual-phosphorescent iridium(III) complexes extending oxygen sensing from hypoxia to hyperoxia. J Am Chem Soc 140(25):7827–7834. https://doi.org/10.1021/jacs.8b02492

    Article  CAS  PubMed  Google Scholar 

  29. You Y, Han Y, Lee YM, Park SY, Nam W, Lippard SJ (2011) Phosphorescent sensor for robust quantification of copper(II) ion. J Am Chem Soc 133(30):11488–11491. https://doi.org/10.1021/ja204997c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao Q, Huang CH, Li FY (2011) Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev 40(5):2508–2524. https://doi.org/10.1039/c0cs00114g

    Article  CAS  PubMed  Google Scholar 

  31. Ma Y, Liang H, Zeng Y, Yang H, Ho C-L, Xu W, Zhao Q, Huang W, Wong W-Y (2016) Phosphorescent soft salt for ratiometric and lifetime imaging of intracellular pH variations. Chem Sci 7(5):3338–3346. https://doi.org/10.1039/c5sc04624f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ko CN, Yang C, Lin S, Li S, Dong Z, Liu J, Lee SM, Leung CH, Ma DL (2017) A long-lived phosphorescence iridium(III) complex as a switch on-off-on probe for live zebrafish monitoring of endogenous sulfide generation. Biosens Bioelectron 94:575–583. https://doi.org/10.1016/j.bios.2017.03.050

    Article  CAS  PubMed  Google Scholar 

  33. Lo KK-W, Tsoa KK-S (2015) Functionalization of cyclometalated iridium(III) polypyridine complexes for the design of intracellular sensors, organelle-targeting imaging reagents, and metallodrugs. Inorg Chem Front 2:510–524. https://doi.org/10.1039/C5QI00002E

    Article  CAS  Google Scholar 

  34. Huang H, Yu B, Zhang P, Huang J, Chen Y, Gasser G, Ji L, Chao H (2015) Highly charged ruthenium(II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy. Angew Chem Int Ed 54(47):14049–14052. https://doi.org/10.1002/anie.201507800

    Article  CAS  Google Scholar 

  35. Yang YL, Guo LH, Ge XX, Tian ZZ, Gong YT, Zheng HM, Du Q, Zheng XF, Liu Z (2019) Novel lysosome-targeted cyclometalated Iridium(III) anticancer complexes containing imine-N-heterocyclic carbene ligands: synthesis, spectroscopic properties and biological activity. Dyes Pigm 161:119–129. https://doi.org/10.1016/j.dyepig.2018.09.044

    Article  CAS  Google Scholar 

  36. Du Q, Yang YL, Guo LH, Tian M, Ge XX, Tian ZZ, Zhao LP, Xu ZS, Li JJ, Liu Z (2019) Fluorescent half-sandwich phosphine-sulfonate iridium(III) and ruthenium (II) complexes as potential lysosome-targeted anticancer agents. Dyes Pigm 162:821–830. https://doi.org/10.1016/j.dyepig.2018.11.009

    Article  CAS  Google Scholar 

  37. Yang Y, Guo L, Tian Z, Gong Y, Zheng H, Zhang S, Xu Z, Ge X, Liu Z (2018) Novel and versatile imine-N-heterocyclic carbene half-sandwich iridium(III) complexes as lysosome-targeted anticancer agents. Inorg Chem 57(17):11087–11098. https://doi.org/10.1021/acs.inorgchem.8b01656

    Article  CAS  PubMed  Google Scholar 

  38. Yang C, Mehmood F, Lam TL, Chan SL, Wu Y, Yeung CS, Guan X, Li K, Chung CY, Zhou CY, Zou T, Che CM (2016) Stable luminescent iridium(III) complexes with bis(N-heterocyclic carbene) ligands: photo-stability, excited state properties, visible-light-driven radical cyclization and CO2 reduction, and cellular imaging. Chem Sci 7(5):3123–3136. https://doi.org/10.1039/c5sc04458h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nam JS, Kang MG, Kang J, Park SY, Lee SJ, Kim HT, Seo JK, Kwon OH, Lim MH, Rhee HW, Kwon TH (2016) Endoplasmic reticulum-localized iridium(III) complexes as efficient photodynamic therapy agents via protein modifications. J Am Chem Soc 138(34):10968–10977. https://doi.org/10.1021/jacs.6b05302

    Article  CAS  PubMed  Google Scholar 

  40. Hao L, Li ZW, Zhang DY, He L, Liu W, Yang J, Tan CP, Ji LN, Mao ZW (2019) Monitoring mitochondrial viscosity with anticancer phosphorescent Ir(III) complexes via two-photon lifetime imaging. Chem Sci 10(5):1285–1293. https://doi.org/10.1039/c8sc04242j

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Tan CP, Zhang W, He L, Ji LN, Mao ZW (2015) Phosphorescent iridium(III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents. Biomaterials 39:95–104. https://doi.org/10.1016/j.biomaterials.2014.10.070

    Article  CAS  PubMed  Google Scholar 

  42. He L, Zhang MF, Pan ZY, Wang KN, Zhao ZJ, Li Y, Mao ZW (2019) A mitochondria-targeted iridium(III)-based photoacid generator induces dual-mode photodynamic damage within cancer cells. Chem Commun 55(70):10472–10475. https://doi.org/10.1039/c9cc04871e

    Article  CAS  Google Scholar 

  43. Li Y, Wang KN, He L, Ji LN, Mao ZW (2020) Synthesis, photophysical and anticancer properties of mitochondria-targeted phosphorescent cyclometalated iridium(III) N-heterocyclic carbene complexes. J Inorg Biochem 205:110976. https://doi.org/10.1016/j.jinorgbio.2019.110976

    Article  CAS  PubMed  Google Scholar 

  44. Li CY, Yu MX, Sun Y, Wu YQ, Huang CH, Li FY (2011) A nonemissive iridium(III) complex that specifically lights-up the nuclei of living cells. J Am Chem Soc 133(29):11231–11239. https://doi.org/10.1021/ja202344c

    Article  CAS  PubMed  Google Scholar 

  45. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9(6):447–464. https://doi.org/10.1038/nrd3137

    Article  CAS  PubMed  Google Scholar 

  46. Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83(1):84–92. https://doi.org/10.1016/j.yexmp.2006.09.008

    Article  CAS  PubMed  Google Scholar 

  47. Hoye AT, Davoren JE, Wipf P, Fink MP, Kagan VE (2008) Targeting mitochondria. Acc Chem Res 41(1):87–97. https://doi.org/10.1021/ar700135m

    Article  CAS  PubMed  Google Scholar 

  48. Swarnalatha K, Rathnamala P, Babu AA, Bhuvanesh N (2016) Structural characterization, photophysical and bsa binding interaction studies of 4,4 '-bis(benzimidazolyl)-2,2 '-bipyridine. J Struct Chem 57(8):1554–1560. https://doi.org/10.1134/S0022476616080096

    Article  CAS  Google Scholar 

  49. Zhang KY, Li SP, Zhu N, Or IW, Cheung MS, Lam YW, Lo KK (2010) Structure, photophysical and electrochemical properties, biomolecular interactions, and intracellular uptake of luminescent cyclometalated iridium(III) dipyridoquinoxaline complexes. Inorg Chem 49(5):2530–2540. https://doi.org/10.1021/ic902465b

    Article  CAS  PubMed  Google Scholar 

  50. Puckett CA, Barton JK (2008) Mechanism of cellular uptake of a ruthenium polypyridyl complex. Biochemistry 47(45):11711–11716. https://doi.org/10.1021/bi800856t

    Article  CAS  PubMed  Google Scholar 

  51. Tan C, Lai S, Wu S, Hu S, Zhou L, Chen Y, Wang M, Zhu Y, Lian W, Peng W, Ji L, Xu A (2010) Nuclear permeable ruthenium(II) beta-carboline complexes induce autophagy to antagonize mitochondrial-mediated apoptosis. J Med Chem 53(21):7613–7624. https://doi.org/10.1021/jm1009296

    Article  CAS  PubMed  Google Scholar 

  52. Lo KKW, Chan BTN, Liu HW, Zhang KY, Li SPY, Tang TSM (2013) Cyclometalated iridium(III) polypyridine dibenzocyclooctyne complexes as the first phosphorescent bioorthogonal probes. Chem Commun 49(39):4271–4273. https://doi.org/10.1039/c2cc36907a

    Article  CAS  Google Scholar 

  53. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95. https://doi.org/10.1038/nrc2981

    Article  CAS  PubMed  Google Scholar 

  54. Li Y, Liu GF, Tan CP, Ji LN, Mao ZW (2014) Antitumor properties and mechanisms of mitochondria-targeted Ag(i) and Au(i) complexes containing N-heterocyclic carbenes derived from cyclophanes. Metallomics 6(8):1460–1468. https://doi.org/10.1039/c4mt00046c

    Article  CAS  PubMed  Google Scholar 

  55. Huang H, Zhang P, Yu B, Chen Y, Wang J, Ji L, Chao H (2014) Targeting nucleus DNA with a cyclometalated dipyridophenazineruthenium(II) complex. J Med Chem 57(21):8971–8983. https://doi.org/10.1021/jm501095r

    Article  CAS  PubMed  Google Scholar 

  56. Stankov MV, Lucke T, Das AM, Schmidt RE, Behrens GM (2010) Mitochondrial DNA depletion and respiratory chain activity in primary human subcutaneous adipocytes treated with nucleoside analogue reverse transcriptase inhibitors. Antimicrob Agents Chemother 54(1):280–287. https://doi.org/10.1128/AAC.00914-09

    Article  CAS  PubMed  Google Scholar 

  57. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591. https://doi.org/10.1038/nrd2803

    Article  CAS  PubMed  Google Scholar 

  58. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241. https://doi.org/10.1038/nrm2312

    Article  CAS  PubMed  Google Scholar 

  59. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273(16):9357–9360. https://doi.org/10.1074/jbc.273.16.9357

    Article  CAS  PubMed  Google Scholar 

  60. Vermes I, Haanen C, Reutelingsperger C (2000) Flow cytometry of apoptotic cell death. J Immunol Methods 243:167–190. https://doi.org/10.1016/S0022-1759(00)00233-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21601210, 21572282, 21701195, and 21601208), the 973 Program (No. 2015CB856301), the Ministry of Education of China (No. IRT_17R111), Science and Technology Planning Project of Guangdong Province (Nos. 2013B051000047 and 207999), the Fundamental Research Funds for the Central Universities, the Natural Science Foundation of Hunan Province (Nos. 2019JJ50188 and 2019JJ50145), and the Scientific Research Fund of Hunan Provincial Education Department (No. 18C0340).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Li or Zong-Wan Mao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, B., Xu, CX. et al. Mitochondria-targeted phosphorescent cyclometalated iridium(III) complexes: synthesis, characterization, and anticancer properties. J Biol Inorg Chem 25, 597–607 (2020). https://doi.org/10.1007/s00775-020-01783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01783-2

Keywords

Navigation