Skip to main content
Log in

Structural insights into the role of the acid-alcohol pair of residues required for dioxygen activation in cytochrome P450 enzymes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The cytochrome P450 heme monooxygenases commonly use an acid-alcohol pair of residues, within the I-helix, to activate iron-bound dioxygen. This work aims to clarify conflicting reports on the importance of the alcohol functionality in this process. Mutants of the P450, CYP199A4 (CYP199A4D251N and CYP199A4T252A), were prepared, characterised and their crystal structures were solved. The acid residue of CYP199A4 is not part of a salt bridge network, a key feature of paradigmatic model system P450cam. Instead, there is a direct proton delivery network, via a chain of water molecules, extending to the surface. Nevertheless, CYP199A4D251N dramatically reduced the activity of the enzyme consistent with a role in proton delivery. CYP199A4T252A decreased the coupling efficiency of the enzyme with a concomitant increase in the hydrogen peroxide uncoupling pathway. However, the effect of this mutation was much less pronounced than reported with P450cam. Its crystal structures revealed fewer changes at the I-helix, compared to the P450cam system. The structural changes observed within the I-helix of P450cam during oxygen activation do not seem to be required in this P450. These differences are due to the presence of a second threonine residue at position 253, which is absent in P450cam. This threonine forms part of the hydrogen bonding network, resulting in subtle structural changes and is also present across the majority of the P450 superfamily. Overall, the results suggest that while the acid-alcohol pair is important for dioxygen activation this process and the method of proton delivery can differ across P450s.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ortiz de Montellano PR (2010) Chem Rev 110:932–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poulos TL (2014) Chem Rev 114:3919–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ogliaro F, de Visser SP, Cohen S, Sharma PK, Shaik S (2002) J Am Chem Soc 124:2806–2817

    Article  CAS  PubMed  Google Scholar 

  4. Rittle J, Green MT (2010) Science 330:933–937

    Article  CAS  PubMed  Google Scholar 

  5. Sharma PK, De Visser SP, Shaik S (2003) J Am Chem Soc 125:8698–8699

    Article  CAS  PubMed  Google Scholar 

  6. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980

    Article  CAS  PubMed  Google Scholar 

  7. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) Chem Rev 110:949–1017

    Article  CAS  PubMed  Google Scholar 

  8. Groves JT, McClusky GA (1976) J Am Chem Soc 98:859–861

    Article  CAS  Google Scholar 

  9. Huang X, Groves JT (2017) J Biol Inorg Chem 22:185–207

    Article  CAS  PubMed  Google Scholar 

  10. Sarkar MR, Houston SD, Savage GP, Williams CM, Krenske EH, Bell SG, De Voss JJ (2019) J Am Chem Soc 141:19688-19699

    Article  CAS  PubMed  Google Scholar 

  11. Stok JE, Yamada S, Farlow AJ, Slessor KE, De Voss JJ (2013) Biochim Biophys Acta 1834:688–696

    Article  CAS  PubMed  Google Scholar 

  12. Cupp-Vickery JR, Han O, Hutchinson CR, Poulos TL (1996) Nat Struct Biol 3:632–637

    Article  CAS  PubMed  Google Scholar 

  13. Nagano S, Poulos TL (2005) J Biol Chem 280:31659–31663

    Article  CAS  PubMed  Google Scholar 

  14. Raag R, Martinis SA, Sligar SG, Poulos TL (1991) Biochemistry 30:11420–11429

    Article  CAS  PubMed  Google Scholar 

  15. Vidakovic M, Sligar SG, Li H, Poulos TL (1998) Biochemistry 37:9211–9219

    Article  CAS  PubMed  Google Scholar 

  16. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615–1622

    Article  CAS  PubMed  Google Scholar 

  17. Imai M, Shimada H, Watanabe Y, Matsushima-Hibiya Y, Makino R, Koga H, Horiuchi T, Ishimura Y (1989) Proc Natl Acad Sci USA 86:7823–7827

    Article  CAS  PubMed  Google Scholar 

  18. Gerber NC, Sligar SG (1994) J Biol Chem 269:4260–4266

    CAS  PubMed  Google Scholar 

  19. Martinis SA, Atkins WM, Stayton PS, Sligar SG (1989) J Am Chem Soc 111:9252–9253

    Article  CAS  Google Scholar 

  20. Gerber NC, Sligar SG (1992) J Am Chem Soc 114:8742–8743

    Article  CAS  Google Scholar 

  21. Ishigooka M, Shimizu T, Hiroya K, Hatano M (1992) Biochemistry 31:1528–1531

    Article  CAS  PubMed  Google Scholar 

  22. Yeom H, Sligar SG (1997) Arch Biochem Biophys 337:209–216

    Article  CAS  PubMed  Google Scholar 

  23. Lee-Robichaud P, Akhtar ME, Akhtar M (1998) Biochem J 330(Pt 2):967–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou DJ, Korzekwa KR, Poulos T, Chen SA (1992) J Biol Chem 267:762–768

    CAS  PubMed  Google Scholar 

  25. Kimata Y, Shimada H, Hirose T, Ishimura Y (1995) Biochem Biophys Res Commun 208:96–102

    Article  CAS  PubMed  Google Scholar 

  26. Bell SG, Hoskins N, Xu F, Caprotti D, Rao Z, Wong LL (2006) Biochem Biophys Res Commun 342:191–196

    Article  CAS  PubMed  Google Scholar 

  27. Bell SG, Tan AB, Johnson EO, Wong LL (2010) Mol Biosyst 6:206–214

    Article  CAS  PubMed  Google Scholar 

  28. Bell SG, Yang W, Tan AB, Zhou R, Johnson EO, Zhang A, Zhou W, Rao Z, Wong LL (2012) Dalton Trans 41:8703–8714

    Article  CAS  PubMed  Google Scholar 

  29. Bell SG, Zhou R, Yang W, Tan AB, Gentleman AS, Wong LL, Zhou W (2012) Chem Eur J 18:16677–16688

    Article  CAS  PubMed  Google Scholar 

  30. Coleman T, Chao RR, Bruning JB, De Voss J, Bell SG (2015) RSC Adv 5:52007–52018

    Article  CAS  Google Scholar 

  31. Chao RR, De Voss JJ, Bell SG (2016) RSC Adv 6:55286–55297

    Article  CAS  Google Scholar 

  32. Coleman T, Wong SH, Podgorski MN, Bruning JB, De Voss JJ, Bell SG (2018) ACS Catal 8:5915–5927

    Article  CAS  Google Scholar 

  33. Bell SG, Xu F, Forward I, Bartlam M, Rao Z, Wong L-L (2008) J Mol Biol 383:561–574

    Article  CAS  PubMed  Google Scholar 

  34. Omura T, Sato R (1964) J Biol Chem 239:2370–2378

    CAS  PubMed  Google Scholar 

  35. Coleman T, Chao RR, De Voss J, Bell SG (2016) Biochim Biophys Acta Proteins Proteom 1864:667–675

    Article  CAS  Google Scholar 

  36. Maddigan NK, Bell SG (2017) Arch Biochem Biophys 615:15–21

    Article  CAS  PubMed  Google Scholar 

  37. Williams JW, Morrison JF (1979) Methods Enzymol 63:437–467

    Article  CAS  PubMed  Google Scholar 

  38. Xu F, Bell SG, Rao Z, Wong LL (2007) Protein Eng Des Sel 20:473–480

    Article  CAS  PubMed  Google Scholar 

  39. Cowieson NP, Aragao D, Clift M, Ericsson DJ, Gee C, Harrop SJ, Mudie N, Panjikar S, Price JR, Riboldi-Tunnicliffe A, Williamson R, Caradoc-Davies T (2015) J Synchrotron Radiat 22:187–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McPhillips TM, McPhillips SE, Chiu HJ, Cohen AE, Deacon AM, Ellis PJ, Garman E, Gonzalez A, Sauter NK, Phizackerley RP, Soltis SM, Kuhn P (2002) J Synchrotron Radiat 9:401–406

    Article  CAS  PubMed  Google Scholar 

  41. Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG (2011) Acta Crystallogr D Biol Crystallogr 67:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Evans PR, Murshudov GN (2013) Acta Crystallogr D Biol Crystallogr 67:1204–1214

    Article  CAS  Google Scholar 

  43. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adams PD, Afonine GBPV, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jefcoate CR (1978) Methods Enzymol 52:258–279

    Article  CAS  PubMed  Google Scholar 

  48. Dawson JH, Andersson LA, Sono M (1982) J Biol Chem 257:3606–3617

    CAS  PubMed  Google Scholar 

  49. Dawson JH, Andersson LA, Sono M (1983) J Biol Chem 258:13637–13645

    CAS  PubMed  Google Scholar 

  50. Podgorski MN, Coleman T, Chao RR, De Voss JJ, Bruning JB, Bell SG (2020) J Inorg Biochem 203:110913

    Article  CAS  PubMed  Google Scholar 

  51. Batabyal D, Poulos TL (2013) Biochemistry 52:8898–8906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J (1995) Structure 3:41–62

    Article  CAS  PubMed  Google Scholar 

  53. Guengerich FP (2001) Chem Res Toxicol 14:611–650

    Article  CAS  PubMed  Google Scholar 

  54. Yeom H, Sligar SG, Li H, Poulos TL, Fulco AJ (1995) Biochemistry 34:14733–14740

    Article  CAS  PubMed  Google Scholar 

  55. Truan G, Peterson JA (1998) Arch Biochem Biophys 349:53–64

    Article  CAS  PubMed  Google Scholar 

  56. Cryle MJ, De Voss JJ (2008) ChemBioChem 9:261–266

    Article  CAS  PubMed  Google Scholar 

  57. Hishiki T, Shimada H, Nagano S, Egawa T, Kanamori Y, Makino R, Park SY, Adachi S, Shiro Y, Ishimura Y (2000) J Biochem 128:965–974

    Article  CAS  PubMed  Google Scholar 

  58. Kim D, Heo YS, Ortiz de Montellano PR (2008) Arch Biochem Biophys 474:150–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dhers L, Ducassou L, Boucher JL, Mansuy D (2017) Cell Mol Life Sci 74:1859–1869

    Article  CAS  PubMed  Google Scholar 

  60. Vaz AD, Pernecky SJ, Raner GM, Coon MJ (1996) Proc Natl Acad Sci USA 93:4644–4648

    Article  CAS  PubMed  Google Scholar 

  61. Vaz AD, McGinnity DF, Coon MJ (1998) Proc Natl Acad Sci USA 95:3555–3560

    Article  CAS  PubMed  Google Scholar 

  62. Lau ICK, Feyereisen R, Nelson DR, Bell SG (2019) Arch Biochem Biophys 669:11–21

    Article  CAS  PubMed  Google Scholar 

  63. Child SA, Bradley JM, Pukala TL, Svistunenko DA, Le Brun NE, Bell SG (2018) Chem Sci 9:7948–7957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Slessor KE, Farlow AJ, Cavaignac SM, Stok JE, De Voss JJ (2011) Arch Biochem Biophys 507:154–162

    Article  CAS  PubMed  Google Scholar 

  65. Coelho PS, Brustad EM, Kannan A, Arnold FH (2013) Science 339:307–310

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by ARC Grant DP140103229 (to JJDV and SGB). SGB acknowledges the ARC for a Future Fellowship (FT140100355). The authors also acknowledge the award of Australian Government Research Training Program Scholarships (PhD to TC and MPhil to MNP). We would like to thank the scientists at MX1 beamline for help with data collection. We acknowledge ANSTO for financial support and in providing the facility used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Bell.

Ethics declarations

Conflict of interest

None of the authors have any conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleman, T., Stok, J.E., Podgorski, M.N. et al. Structural insights into the role of the acid-alcohol pair of residues required for dioxygen activation in cytochrome P450 enzymes. J Biol Inorg Chem 25, 583–596 (2020). https://doi.org/10.1007/s00775-020-01781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01781-4

Keywords

Navigation