Skip to main content
Log in

Molecular dynamics simulations of plutonium binding and its decorporation from the binding-cleft of human serum transferrin

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

 The possibility of plutonium (Pu) intake by radiation workers can not be ruled out. Transportation of Pu(IV) to various organs/cells is mainly carried through iron-carrying protein, serum transferrin (sTf), by receptor-mediated endocytosis. Understanding the Pu–sTf interaction is a primary step toward future design of its decorporating agents. We report MD simulations of Pu(IV) binding with sTf and look out for its decorporation at extracellular pH using suitable ligands. MD simulations were carried out in polarizable water environment at different protonation states of the protein. Results unravel the binding motif of Pu(IV): (1) sTf binds the ion in closed conformation at extracellular serum pH with carbonate as synergistic anions, (2) change in protonation state of dilysine (K206 and K296)-trigger and that of the carbonate ion at acidic endosomal pH is found to cause conformational changes of protein, conducive for the heavy ion to be released, although; (3) strong electrostatic interaction between D63 in the binding-cleft and Pu(IV) is found not to ever set free the ion. In an endeavour to decorporate Pu(IV), fragmented molecular form of hydroxypyridinone (HOPO) and catechol (CAM)-based ligands are docked at the binding site (BS) of the protein and metadynamics simulations are conducted. Pu(IV) binding at BS is found to be so strong that it was not detached from BS with the docked HOPO. However, for the identical set of simulation parameters, CAM is found to facilitate dislodging the heavy ion from the protein’s binding influence. Differential behaviour of the two chelators is further explored.

Graphic abstract

Fragmented molecular form of hydroxy-pyridinone (HOPO) and catecholamide (CAM) ligands were docked at the binding-site (BS) of human serum transferrin (sTf) to explore their feasibility as plausible Pu(IV) decorporating agents by employing metadynamics method. CAM was found to dislodge Pu from the sTf BS, while HOPO could not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cowan GA (1976) A natural fission reactor. Sci Am 235:36–47

    Article  CAS  Google Scholar 

  2. Mishra L, Singh IS, Patni HK, Rao DD (2018) Comparing lungs, liver and knee measurement geometries at various times post inhalation of \(^{239}\text{ Pu }\) and \(^{241}\text{ Am }\). Radiat Prot Dosim 181:168–177

    Article  CAS  Google Scholar 

  3. Singh IS, Mishra L, Yadav JR, Nadar MY, Rao DD, Pradeepkumar KS (2015) Applying a low energy HPGe detector gamma ray spectrometric technique for the evaluation of Pu/Am ratio in biological samples. Appl Radiat Isot 104:49–54

    Article  CAS  PubMed  Google Scholar 

  4. Sutcliffe WG, Condit RH, Mansfield WG, Myers DS, Layton DW, Murphy PW (1995) A perspective on the dangers of plutonium. Lawrence Livermore National Laboratory, Livermore

    Google Scholar 

  5. Jeanson A, Ferrand M, Funke H, Hennig C, Moisy P, Solari P, Vidaud C, Den Auwer C (2010) the role of transferrin in actinide(IV) uptake: comparison with iron(III). Chem Eur J 16:1378–1387

    Article  CAS  PubMed  Google Scholar 

  6. Jensen MP, Gorman-Lewis D, Aryal B, Paunesku T, Vogt S, Rickert PG, Seifert S, Lai B, Woloschak GE, Soderholm L (2011) An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium. Nat Chem Biol 7:560–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun H, Li H, Sadler PJ (1999) Transferrin as a metal ion mediator. Chem Rev 99:2817–2842

    Article  CAS  PubMed  Google Scholar 

  8. Taylor D, Duffield J, Williams D, Yule L, Gaskin P, Unalkat P (1991) Binding of f-elements to the iron-transport protein transferrin. Eur J Solid State Inorg Chem 28:271–274

    CAS  Google Scholar 

  9. Taylor DM (1998) The bioinorganic chemistry of actinides in blood. J Alloys Compd 271:6–10

    Article  Google Scholar 

  10. Ansoborlo E, Prat O, Moisy P, Den Auwer C, Guilbaud P, Carriere M, Gouget B, Duffield J, Doizi D, Vercouter T, Moulin C, Moulin V (2006) Actinide speciation in relation to biological processes. Biochimie 88:1605–1618

    Article  CAS  PubMed  Google Scholar 

  11. Vincent JB, Love S (2012) The binding and transport of alternative metals by transferrin. Biochim Biophys Acta 1820:362–378

    Article  CAS  PubMed  Google Scholar 

  12. Harris WR, Messori L (2002) A comparative study of aluminum(III), gallium(III), indium(III), and thallium(III) binding to human serum transferrin. Coord Chem Rev 228:237–262

    Article  CAS  Google Scholar 

  13. Dennis Chasteen N (1977) Human serotransferrin: structure and function. Coord Chem Rev 22:1–36

    Article  Google Scholar 

  14. MacGillivray RTA, Moore SA, Chen J, Anderson BF, Baker H, Luo Y, Bewley M, Smith CA, Murphy MEP, Wang Y, Mason AB, Woodworth RC, Brayer GD, Baker EN (1998) Two high-resolution crystal structures of the recombinant N-lobe of human transferrin reveal a structural change implicated in iron release. Biochemistry 37:7919–7928

    Article  CAS  PubMed  Google Scholar 

  15. Mujika JI, Escribano B, Akhmatskaya E, Ugalde JM, Lopez X (2012) Molecular dynamics simulations of iron- and aluminum-loaded serum transferrin: protonation of Tyr188 is necessary to prompt metal release. Biochemistry 51:7017–7027

    Article  CAS  PubMed  Google Scholar 

  16. Mishra L, Pramilla Damodar S, Sundararajan M, Bandyopadhyay T (2019) Binding of Cm(III) and Th(IV) with human transferrin at serum pH: combined QM and MD investigations. J Phys Chem B 123:2729–2744

    Article  CAS  PubMed  Google Scholar 

  17. Mishra L, Bandyopadhyay T (2019) Equilibrium MD simulation reveals differential binding of Cm(III) and Th(IV) with human serum transferrin at acidic endosomal pH (submitted)

  18. Tinoco AD, Saxena M, Sharma S, Noinaj N, Delgado Y, Gonzalez EPQ, Conklin SE, Zambrana N, Loza-Rosas SA, Parks TB (2016) Unusual synergism of transferrin and citrate in the regulation of Ti(IV) speciation, transport, and toxicity. J Am Chem Soc 138:5659–5665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harris WR (2012) Anion binding properties of the transferrins. Implications for function. Biochim Biophys Acta 1820:348–361

    Article  CAS  PubMed  Google Scholar 

  20. Ghanbari Z, Housaindokht MR, Bozorgmehr MR, Izadyar M (2017) Effects of synergistic and non-synergistic anions on the iron binding site from serum transferrin: a molecular dynamic simulation analysis. J Mol Graph Model 78:176–186

    Article  CAS  PubMed  Google Scholar 

  21. Sauge-Merle S, Lemaire D, Evans RW, Berthomieu C, Aupiais J (2017) Revisiting binding of plutonium to transferrin by CE-ICP-MS. Dalton Trans 46:1389–1396

    Article  CAS  PubMed  Google Scholar 

  22. Sturzbecher-Hoehne M, Goujon C, Deblonde GJP, Mason AB, Abergel RJ (2013) Sensitizing curium luminescence through an antenna protein to investigate biological actinide transport mechanisms. J Am Chem Soc 135:2676–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Michon J, Frelon S, Garnier C, Coppin F (2010) Determinations of uranium(VI) binding properties with some metalloproteins (transferrin, albumin, metallothionein and ferritin) by fluorescence quenching. J Fluoresc 20:581–590

    Article  CAS  PubMed  Google Scholar 

  24. Taylor DM, Farrow LC (1987) Identification of transferrin as the main binding site for protactinium in rat blood serum. Int J Radiat Appl Instrum Part B 14:27–31

    Article  CAS  Google Scholar 

  25. Racine R, Moisy P, Paquet F, Metivier H, Madic C (2003) In vitro study of the interaction between neptunium ions and apo serum transferrin by absorption spectrophotometry and ultrafiltration: the case of Np(V). Radiochim Acta 91:115

    Article  CAS  Google Scholar 

  26. Lehmann M, Culig H, Taylor DM (1983) Identification of transferrin as the principal plutonium-binding protein in the blood serum and liver cytosol of rats: immunological and chromatographic studies. Int J Radiat Biol Relat Stud Phys Chem Med 44:65–74

    Article  CAS  PubMed  Google Scholar 

  27. Duffield JR, Taylor DM, Proctor SA (1986) The binding of plutonium to transferrin in the presence of tri-n-butyl phosphate or nitrate and its release by diethylenetriaminepenta-acetate and the tetrameric catechoylamide ligand LICAMC(C). Int J of Nucl Med and Biol 12:483–487

    Article  CAS  Google Scholar 

  28. Sadhu B, Sundararajan M, Bandyopadhyay T (2015) Selectivity of a singly permeating ion in nonselective NaK channel: combined QM and MD based investigations. J Phys Chem B 119:12783–12797

    Article  CAS  PubMed  Google Scholar 

  29. Sadhu B, Sundararajan M, Bandyopadhyay T (2017) Divalent ions are potential permeating blockers of the non-selective NaK ion channel: combined QM and MD based investigations. Phys Chem Chem Phys 19:27611–27622

    Article  CAS  PubMed  Google Scholar 

  30. Mishra L, Sundararajan M (2019) Binding of Cm(III) and Th(IV) with human transferrin at serum pH: combined QM and MD investigations. J Chem Sci 131:15

    Article  CAS  Google Scholar 

  31. Rinaldo D, Field MJ (2004) A density functional theory study of the iron-binding site of human serum transferrin. Aust J Chem 57:1219–1222

    Article  CAS  Google Scholar 

  32. Benavides-Garcia MG, Balasubramanian K (2009) Structural insights into the binding of uranyl with human serum protein apotransferrin structure and spectra of protein–uranyl interactions. Chem Res Toxicol 22:1613–1621

    Article  CAS  PubMed  Google Scholar 

  33. Justino GC, Garribba E, Pessoa JC (2013) Binding of VIVO2+ to the Fe binding sites of human serum transferrin. A theoretical study. J Biol Inorg Chem 18:803–813

    Article  CAS  PubMed  Google Scholar 

  34. Eckenroth BE, Steerea AN, Chasteen ND, Everse SJ, Mason AB (2011) How the binding of human transferrin primes the transferrin receptor potentiating iron release at endosomal pH. Proc Natl Acacd Sci 108:13089–13094

    Article  Google Scholar 

  35. Dhungana S, Taboy CH, Anderson DS, Vaughan KG, Aisen P, Mietzner TA, Crumbliss AL (2003) The influence of the synergistic anion on iron chelation by ferric binding protein, a bacterial transferrin. Proc Natl Acacd Sci 100:3659–3664

    Article  CAS  Google Scholar 

  36. Dudev T, Lim C (2003) Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem Rev 103:773–788

    Article  CAS  PubMed  Google Scholar 

  37. Leontyev IV, Stuchebrukhov A (2014) A polarizable molecular interactions in condensed phase and their equivalent nonpolarizable models. J Chem Phys 141:014103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leontyev IV, Stuchebrukhov A (2012) A polarizable mean-field model of water for biological simulations with AMBER and CHARMM force fields. J Chem Theory Comput 8:3207–3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pathak AK, Bandyopadhyay T (2015) Protein–drug interactions with effective polarization in polarizable water: oxime unbinding from AChE gorge. J Phys Chem B 119:14460–14471

    Article  CAS  PubMed  Google Scholar 

  40. Pathak AK, Bandyopadhyay T (2018) Dynamic mechanism of a fluorinated oxime reactivator unbinding from AChE gorge in polarizable water. J Phys Chem B 122:3876–3888

    Article  CAS  PubMed  Google Scholar 

  41. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603

    Article  CAS  PubMed  Google Scholar 

  42. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. WIREs Comput Mol Sci 1:826–843

    Article  CAS  Google Scholar 

  43. Li Y, Harris WR, Maxwell A, MacGillivray RT, Brown T (1998) Kinetic studies on the removal of iron and aluminum from recombinant and site-directed mutant N-lobe half transferrins. Biochemistry 37:14157–14166

    Article  CAS  PubMed  Google Scholar 

  44. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40:W537–W541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Captain I, Deblonde GJP, Rupert PB, An DD, Illy MC, Rostan E, Ralston CY, Strong RK, Abergel RJ (2016) Engineered recognition of tetravalent zirconium and thorium by chelator-protein systems: toward flexible radiotherapy and imaging platforms. Inorg Chem 55:11930–11936

    Article  CAS  PubMed  Google Scholar 

  46. Allred BE, Rupert PB, Gauny SS, An DD, Ralston CY, Sturzbecher-Hoehne M, Strong RK, Abergel RJ (2015) Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proc Natl Acad Sci USA 112:10342–10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  PubMed  Google Scholar 

  49. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinf 78:1950–1958

    CAS  Google Scholar 

  50. Sousa da Silva AW, Vranken WF (2012) ACPYPE—AnteChamber PYthon parser interfacE. BMC Res Notes 5:367

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang J, Wang W, Kollmann P, Case D (2005) Developement and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  52. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  CAS  PubMed  Google Scholar 

  53. Gordon MS, Schmidt MW (2005) Chapter 41—Advances in electronic structure theory: GAMESS a decade later A2-Dykstra, Clifford E. Theory Appl Comput Chem 20:1167–1189

    Google Scholar 

  54. Dupradeau FY, Pigache A, Zaffran T, Savineau C, Lelong R, Grivel N, Lelong D, Rosanski W, Cieplak P (2010) The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Phys Chem Chem Phys 12:7821–7839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li P, Song LF, Merz KM (2015) Parameterization of highly charged metal ions using the 12-6-4 LJ-type nonbonded model in explicit water. J Phys Chem B 119:883–895

    Article  CAS  PubMed  Google Scholar 

  56. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  57. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  CAS  PubMed  Google Scholar 

  58. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  59. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  60. Hess B, Bekker H, Berendsen Herman JC, Fraaije Johannes GEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  61. Luzar A, Chandler D (1996a) Effect of environment on hydrogen bond dynamics in liquid water. Phys Rev Lett 76:928–931

    Article  CAS  PubMed  Google Scholar 

  62. Luzar A, Chandler D (1996b) Hydrogen-bond kinetics in liquid water. Nature (London) 379:55–57

    Article  CAS  Google Scholar 

  63. Luzar A, Chandler D (1993) Structure and hydrogen bond dynamics of water dimethyl sulfoxide mixtures by computer simulations. J Chem Phys 98:8160–8173

    Article  CAS  Google Scholar 

  64. Chowdhuri S, Chandra A (2002) Hydrogen bonds in aqueous electrolyte solutions: statistics and dynamics based on both geometric and energetic criteria. Phys Rev E 66:041203–041207

    Article  CAS  Google Scholar 

  65. Chandra A (2000) Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions. Phys Rev Lett 85:768–771

    Article  CAS  PubMed  Google Scholar 

  66. Root LJ, Berne BJ (1997) Effect of pressure on hydrogen bonding in glycerol: a molecular dynamics investigation. J Chem Phys 107:4350–4357

    Article  CAS  Google Scholar 

  67. Rapaport DC (1983) Hydrogen bonds in water. Network organization and lifetimes. Mol Phys 50:1151–1162

    Article  CAS  Google Scholar 

  68. Bagchi B (2005) Water dynamics in the hydration layer around proteins and micelles. Chem Rev 105:3197–3219

    Article  CAS  PubMed  Google Scholar 

  69. Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA, Parrinello M (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180:1961–1972

    Article  CAS  Google Scholar 

  70. Sinha V, Ganguly B, Bandyopadhyay T (2012) Energetics of ortho-7 (oxime drug) translocation through the active-site gorge of tabun conjugated acetylcholinesterase. PLoS One 7:e40188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schmidtke P, Luque FJ, Murray JB, Barril X (2011) Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design. J Am Chem Soc 133:18903–18910

    Article  CAS  PubMed  Google Scholar 

  72. Pal SK, Zewail AH (2004) Dynamics of water in biological recognition. Chem Rev 104:2099–2124

    Article  CAS  PubMed  Google Scholar 

  73. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250

    Article  CAS  Google Scholar 

  74. Tiwary P, Limongelli V, Salvalaglio M, Parrinello M (2015) Kinetics of protein-ligand unbinding: predicting pathways, rates, and rate-limiting steps. Proc Natl Acad Sci USA 112:E386–E391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pathak AK, Bandyopadhyay T (2017) Dielectric constant of solvents at nano to bulk regimes: linear response theory and statistical mechanics-based approaches. Phys Chem Chem Phys 19:5560–5569

    Article  CAS  PubMed  Google Scholar 

  76. Isom DG, Cannon BR, Castañeda CA, Robinson A, García-Moreno EB (2008) High tolerance for ionizable residues in the hydrophobic interior of proteins. Proc Natl Acad Sci USA 105:17784–17788

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gao J, Bosco DA, Powers ET, Kelly JW (2009) Localized thermodynamic coupling between hydrogen bonding and microenvironment polarity substantially stabilizes proteins. Nat Struct Mol Biol 16:684–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abergel RJ, Raymond KN (2006) Synthesis and thermodynamic evaluation of mixed hexadentate linear iron chelators containing hydroxypyridinone and terephthalamide units1. Inorg Chem 45:3622–3631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Volf V (1985) Chelation therapy of incorporated plutonium-238 and americium-241: comparison of LICAM(C), DTPA and DFOA in Rats, Hamsters and Mice. Int J Radiat Biol Relat Stud Phys Chem Med 49:449–462

    Article  Google Scholar 

  80. Xu J, Durbin PW, Kullgren B, Ebbe SN, Uhlir LC, Raymond KN (2002) Synthesis and initial evaluation for in vivo chelation of Pu(IV) of a mixed octadentate spermine-based ligand containing 4-carbamoyl-3-hydroxy-1-methyl-2(1H)-pyridinone and 6-carbamoyl-1-hydroxy-2(1H)-pyridinone. J Med Chem 45:3963–3971

    Article  CAS  PubMed  Google Scholar 

  81. Durbin PW, Kullgren B, Xu J, Raymond NK (2000) Multidentate hydroxypyridinonate ligands for Pu(IV) chelation in vivo: comparative efficacy and toxicity in mouse of ligands containing 1,2-HOPO or Me-3,2-HOPO. Int J Rad Biol 76:199–214

    Article  CAS  PubMed  Google Scholar 

  82. Guilmette RA, Hakimi R, Durbin PW, Xu J, Raymond KN (2003) Competitive binding of Pu and Am with bone mineral and novel chelating agents. Radiat Prot Dosimetry 105:527–534

    Article  CAS  PubMed  Google Scholar 

  83. Santos MA, Chaves S (2015) 3-Hydroxypyridinone derivatives as metal-sequestering agents for therapeutic use. Future Med Chem 7:383–410

    Article  CAS  PubMed  Google Scholar 

  84. Durbin PW, White DL, Jeung N, Weitl FL, Uhlir LC, Jones ES, Bruenger FW, Raymond KN (1989) Chelation of 238Pu ( IV ) in vivo by 3,4,3-LICAM ( C ) effects of ligand methylation and Ph. Health Phys 56:839–855

    Article  CAS  PubMed  Google Scholar 

  85. Duffield JR, Taylor DM, Proctor SA (1986) The binding of plutonium to transferrin in the presence of tri-n-butyl phosphate or nitrate and its release by diethylenetriaminepenta-acetate and the tetrameric catechoylamide ligand LICAMC(C). Int J Nucl Med Biol 12:483–487

    Article  CAS  PubMed  Google Scholar 

  86. Turcot I, Stintzi A, Xu J, Raymond KN (2000) Fast biological iron chelators: kinetics of iron removal from human diferric transferrin by multidentate hydroxypyridonates. J Biol Inorg Chem 5:634–641

    Article  CAS  PubMed  Google Scholar 

  87. Stradling GN, Stather JW, Gray SA, Moody JC, Ellender M, Hodgson A (1989) The efficacies of pure LICAM(C) and DTPA for enhancing the elimination of plutonium-238 and americium-241 from rats after their inhalation as nitrate. Exp Pathol 37:83–88

    Article  CAS  PubMed  Google Scholar 

  88. Stradling GN, Stather JW, Gray SA, Moody JC, Ellender M, Hodgson A (1986) Efficacies of LICAM(C) and DTPA for the decorporation of inhaled transportable forms of plutonium and americium from the rat. Human Toxicol 5:77–84

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank computer centre, BARC for providing the ANUPAM parallel computational facility and Drs. P. D. Sawant, I. S. Singh, and A. K. Pathak for several fruitful discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tusar Bandyopadhyay.

Ethics declarations

Conflict of interest

The authors declare no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, L., Sundararajan, M. & Bandyopadhyay, T. Molecular dynamics simulations of plutonium binding and its decorporation from the binding-cleft of human serum transferrin. J Biol Inorg Chem 25, 213–231 (2020). https://doi.org/10.1007/s00775-020-01753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01753-8

Keywords

Navigation