Skip to main content

Advertisement

Log in

Mixed ligand complexes of Co(II), Ni(II) and Cu(II) with quercetin and diimine ligands: synthesis, characterization, anti-cancer and anti-oxidant activity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this work, mixed ligand complexes of Co(II) Ni(II) and Cu(II) were synthesized using quercetin and diimine (1,10-phenanthroline or 2,2′-bipyiridine) ligands. The obtained Ni(II) and Co(II) complexes are new and the Cu(II) complexes are synthesized by different method from the literature. The characterization of complexes was performed by elemental analysis, thermogravimetric analysis, ESI–MS, UV–visible and infrared spectral analyses, magnetic susceptibility and molar conductivity measurements. It was found that quercetin, diimine and metal(II) ion form 1:1:1 complexes. Resulting data supported octahedral geometry for Ni(II) and Co(II) complexes and square pyramidal geometry for Cu(II) complexes. The proposed compositions are [Co(queH-1)Cl(phen)(H2O)]∙2H2O (1, queH = quercetin, phen = 1,10-phenanthroline), [Ni(queH-1)Cl(phen)(H2O)]∙2H2O (2), [Cu(queH-1)Cl(phen)]∙2.5H2O (3) and [Cu(queH-1)Cl(bpy)]∙2H2O (4, bpy = 2,2′-bipyiridine). Antioxidant capacity and total phenolic content of complexes measured by FolinCiocalteu and ABTS methods. Anti-cancer effect of these compounds were tested against different cancer cells (A549, PC-3, HeLa and MCF-7). Apoptosis identified by the fluorescence imaging, caspase cleaved cytokeratin-18 and flow cytometry analysis (annexin V, caspase 3/7, mitochondria membrane potential and oxidative stress). As a result, Cu(II) complexes are more effective than the other compounds and Complex 3 is a promising anti-cancer compound against breast cancer MCF-7 and MDA-MB-231 cells (IC50 values are 2.4 and 5.4 µM for 48 h, respectively). Flow cytometry analysis exhibited that Complex 3 caused apoptosis in MCF-7 cells. These results support that Complex 3 has anticancer activity and can be a potential anticancer agent especially in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Celiz G, Daz M, Audisio MC (2011) Antibacterial activity of naringin derivatives against pathogenic strains. J Appl Microbiol 111(3):731–738

    Article  CAS  PubMed  Google Scholar 

  2. Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005) The antitumor activities of flavonoids. Vivo 19(5):895–909

    Google Scholar 

  3. Prochazkova D, Bousova I, Wilhelmova N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82(4):513–523

    Article  CAS  PubMed  Google Scholar 

  4. Wleklik M, Luczak M, Panasiak W, Kobus M, Lammer-Zarawska E (1988) Structural basis for antiviral activity of flavonoids-naturally occurring compounds. Acta Virol 32(6):522–525

    CAS  PubMed  Google Scholar 

  5. Jayaraman J, Jesudoss VAS, Menon VP, Namasivayam N (2012) Anti-inflammatory role of naringenin in rats with ethanol induced liver injury. Toxicol Mech Methods 22(7):568–576

    Article  CAS  PubMed  Google Scholar 

  6. Bansal P, Paul P, Mudgal J, Nayak PG, Pannakal ST, Priyadarsini KI, Unnikrishnan MK (2012) Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp Toxicol Pathol 64(6):651–658

    Article  CAS  PubMed  Google Scholar 

  7. Grazul M, Budzisz E (2009) Biological activity of metal ions complexes of chromones, coumarins and flavones. Coordin Chem Rev 253(21–22):2588–2598

    Article  CAS  Google Scholar 

  8. De Souza RFV, De Giovani WF (2004) Antioxidant properties of complexes of flavonoids with metal ions. Redox Rep 9(2):97–104

    Article  PubMed  CAS  Google Scholar 

  9. Lin X, Lin C-H, Zhao T, Zuo D, Ye Z, Liu L, Lin M-T (2017) Quercetin protects against heat stroke-induced myocardial injury in male rats: antioxidative and antiinflammatory mechanisms. Chem Biol Interact 265:47–54

    Article  CAS  PubMed  Google Scholar 

  10. Mandal SM, Dias RO, Franco OL (2017) Phenolic compounds in antimicrobial therapy. J Med Food 20(10):1031–1038

    Article  CAS  PubMed  Google Scholar 

  11. Yao H, Xu W, Shi X, Zhang Z (2011) Dietary flavonoids as cancer prevention agents. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 29(1):1–31

    Article  PubMed  CAS  Google Scholar 

  12. Ohnishi E, Bannai H (1993) Quercetin potentiates TNF-induced antiviral activity. Antiviral Res 22(4):327–331

    Article  CAS  PubMed  Google Scholar 

  13. Sandhir R, Mehrotra A (1832) Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease. Biochim Biophys Acta. Mol Basis Dis 3:421–430

    Google Scholar 

  14. Dehghan G, Khoshkam Z (2012) Tin(II)–quercetin complex: synthesis, spectral characterisation and antioxidant activity. Food Chem 131(2):422–426

    Article  CAS  Google Scholar 

  15. Porkodi J, Raman N (2018) Synthesis, characterization and biological screening studies of mixed ligand complexes using flavonoids as precursors. Appl Organomet Chem 32(2):e4030

    Article  CAS  Google Scholar 

  16. Dolatabadi JEN (2011) Molecular aspects on the interaction of quercetin and its metal complexes with DNA. Int J Biol Macromol 48(2):227–233

    Article  CAS  PubMed  Google Scholar 

  17. Zhou J, Wang L, Wang J, Tang N (2001) Antioxidative and anti-tumour activities of solid quercetin metal(II) complexes. Transit Metal Chem 26(1–2):57–63

    Article  CAS  Google Scholar 

  18. Zhou J, Wang L, Wang J, Tang N (2001) Synthesis, characterization, antioxidative and antitumor activities of solid quercetin rare earth(III) complexes. J Inorg Biochem 83(1):41–48

    Article  CAS  PubMed  Google Scholar 

  19. Bukhari SB, Memon S, Mahroof-Tahir M, Bhanger MI (2008) Synthesis, characterization and investigation of antioxidant activity of cobalt–quercetin complex. J Mol Struct 892(1–3):39–46

    Article  CAS  Google Scholar 

  20. Bukhari SB, Memon S, Mahroof-Tahir M, Bhanger MI (2009) Synthesis, characterization and antioxidant activity copper–quercetin complex. Spectrochim Acta A 71(5):1901–1906

    Article  CAS  Google Scholar 

  21. Ravichandran R, Rajendran M, Devapiriam D (2014) Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chem 146:472–478

    Article  CAS  PubMed  Google Scholar 

  22. Chen W, Sun S, Cao W, Liang Y, Song J (2009) Antioxidant property of quercetin–Cr(III) complex: the role of Cr(III) ion. J Mol Struct 918(1–3):194–197

    Article  CAS  Google Scholar 

  23. Kang J, Zhuo L, Lu X, Liu H, Zhang M, Wu H (2004) Electrochemical investigation on interaction between DNA with quercetin and Eu–Qu3 complex. J Inorg Biochem 98(1):79–86

    Article  CAS  PubMed  Google Scholar 

  24. Abou-El-Sherbini KhS, Hassanien MM (2004) Synthesis of controlled-pore silica glas functionalized with quercetin and its application for the separation and preconcentration of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). Sep Sci Technol 39(5):1177–1201

    Article  CAS  Google Scholar 

  25. De Souza RFV, De Giovani WF (2005) Synthesis, spectral and electrochemical properties of Al(III) and Zn(II) complexes with flavonoids. Spectrochim Acta A 61(9):1985–1990

    Article  CAS  Google Scholar 

  26. Andelescu AA, Cretu C, Sasca V, Marinescu S, Cseh L, Costisor O, Szerb EI (2018) New heteroleptic Zn(II) and Cu(II) complexes with quercetine and N^N ligands. Polyhedron 147:120–125

    Article  CAS  Google Scholar 

  27. Vimalraj S, Rajalakshmi S, Preeth DR, Kumar SV, Deepak T, Gopinath V, Murugan K, Chatterjee S (2018) Mixed-ligand copper(II) complex of quercetin regulate osteogenesis and angiogenesis. Mater Sci Eng C Mater Biol Appl 83(1):187–194

    Article  CAS  PubMed  Google Scholar 

  28. Alper P, Erkisa M, Mutlu Gençkal H, Şahin S, Ulukaya E, Ari F (2019) Synthesis, characterization, anticancer and antioxidant activity of new nickel(II) and copper(II) flavonoid complexes. J Mol Struct 1196:783–792

    Article  CAS  Google Scholar 

  29. Sarria ALF, Vilela AFL, Frugeri BM, Fernandes JB, Carlos RM, Fernandes da Silva DGMF, Cass QB, Cardoso CL (2016) Copper (II) and zinc (II) complexes with flavanone derivatives: identification of potential cholinesterase inhibitors by on–flow assays. J Inorg Biochem 164:141–149

    Article  CAS  PubMed  Google Scholar 

  30. Balogh-Hergovich E, Kaizer J, Pap J, Speier G, Huttner G, Zsolnai L (2002) Copper-mediated oxygenolysis of flavonols via endoperoxide and dioxetan intermediates; synthesis and oxygenation of [CuII(Phen)2(Fla)]ClO4 and [CuII(L)(Fla)2] [FlaH = Flavonol; L = 1,10-Phenanthroline (Phen), 2,2′-Bipyridine (Bpy), N,N,N′,N′,-Tetramethylethylenediamine (TMEDA)] complexes. E. Eur J Inorg Chem 9:2287–2295

    Article  Google Scholar 

  31. Oliveira RMM, de Souza Daniel JF, Carlos RM (2013) Synthesis, spectroscopic characterization and biological activity of cis–[Ru(hesperidin)(1,10-phenanthroline)2](PF6) complex. J Mol Struct 1031:269–274

    Article  CAS  Google Scholar 

  32. Wang Q, Huang M, Huang Y, Zhang J-S, Zhou G-F, Zeng R-Q, Yang X-B (2014) Synthesis, characterization, DNA interaction, and antitumor activities of mixed-ligand metal complexes of kaempferol and 1,10-phenanthroline/2,2′-bipyridine. Med Chem Res 23(5):2659–2666

    Article  CAS  Google Scholar 

  33. Filho JCC, Sarria ALF, Becceneri AB, Fuzer AM, Batalhão JR, da Silva CMP, Carlos RM, Vieira PC, Fernandes JB, Cominetti MR (2014) Copper (II) and 2,2′-bipyridine complexation improves chemopreventive effects of naringenin against breast tumor cells. PLoS One 9(9):e107058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Xiao B, Wang H, Zhao X (2014) Selective recognition of luteolin and quercetin based on the specific interaction of ortho-dihydroxy substituents with a zinc(II) complex. Anal Methods 6:2894–2899

    Article  CAS  Google Scholar 

  35. Tamayo LV, Gouvea LR, Sousa AC, Albuquerque RM, Teixeira SF, Azevedo RA, Louro SRW, Ferreira AK, Beraldo H (2016) Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action. Biometals 29(1):39–52

    Article  CAS  PubMed  Google Scholar 

  36. Sahin S, Aybastıer O, Işık E (2013) Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chem 141(2):1361–1368

    Article  CAS  PubMed  Google Scholar 

  37. Ali I, Wani WA, Saleem K (2013) Empirical formulae to molecular structures of metal complexes by molar conductance. Synth React Inorg M 43(9):1162–1170

    Article  CAS  Google Scholar 

  38. Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev 7(1):81–122

    Article  CAS  Google Scholar 

  39. El-Behery M, El-Twigry H (2007) Synthesis, magnetic, spectral, and antimicrobial studies of Cu(II), Ni(II) Co(II), Fe(III), and UO2(II) complexes of a new Schiff base hydrazone derived from 7–chloro–4–hydrazinoquinoline. Spectrochim Acta A Mol Biomol Spectrosc 66(1):28–36

    Article  PubMed  CAS  Google Scholar 

  40. Ibrahim MM, Ramadan AEM, Shaban SY, Mersal GAM, El-Shazly SA, Al-Juaid S (2017) Syntheses, characterization and antioxidant activity studies of mixed ligand copper(II) complexes of 2,2′-bipyridine and glycine: the X-ray crystal structure of [Cu(BPy)(Gly)]ClO4. J Mol Struct 1134:319–329

    Article  CAS  Google Scholar 

  41. Inci D, Aydın R, Yılmaz D, Mutlu Gençkal H, Vatan Ö, Çinkılıç N, Zorlu Y (2015) New water-soluble copper (II) complexes including 4,7-dimethyl-1,10-phenanthroline and l-tyrosine: synthesis, characterization, DNA interactions and cytotoxicities. Spectrochim Acta A Part B(4):761–770

    Article  CAS  Google Scholar 

  42. Kanakis CD, Tarantilis PA, Polissiou MG, Diamantoglou S, Tajmir-Riahi HA (2007) An overview of DNA and RNA bindings to antioxidant flavonoids. Cell Biochem Biophys 49(1):29–36

    Article  CAS  PubMed  Google Scholar 

  43. Musualik M, Kuzmicz R, Pawlowski TS, Litwinienko G (2009) Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem 74(7):2699–2709

    Article  CAS  Google Scholar 

  44. Naso L, Valcarcel M, Villacé P, Roura-Ferrer M, Salado C, Ferrer EG, Williams PAM (2014) Specific antitumor activities of natural and oxovanadium(IV) complexed flavonoids in human breast cancer cells. New J Chem 38:2414–2421

    Article  CAS  Google Scholar 

  45. Zhai G, Zhu W, Duan Y, Qu W, Yan Z (2012) Synthesis, characterization and antitumor activity of the germanium-quercetin complex. Main Group Met Chem 35(3–4):103–109

    CAS  Google Scholar 

  46. Tabassum S, Zaki M, Afzal M, Arjmand F (2013) New modulated design and synthesis of quercetin-CuII/ZnII-Sn2 IV scaffold as anticancer agents: in vitro DNA binding profile, DNA cleavage pathway and Topo-I activity. Dalton Trans 42(27):10029–10041

    Article  CAS  PubMed  Google Scholar 

  47. Naso L, Martínez VR, Lezama L, Salado C, Valcarcel M, Ferrer EG, Williams PAM (2016) Antioxidant, anticancer activities and mechanistic studies of the flavone glycoside diosmin and its oxidovanadium(IV) complex. Interactions with bovine serum albumin. Bioorg Med Chem 24(18):4108–4119

    Article  CAS  PubMed  Google Scholar 

  48. Fazary AE, Ju Y-H, Al-Shihri AS, Bani-Fwaz MZ, Alfaifi MY, Alshehri MA, Saleh KA, Elbehairi SEI, Fawy KF, Abd-Rabboh HSM (2017) Platinum and vanadate bioactive complexes of glycoside naringin and phenolates. Open Chem 15(1):189–199

    Article  CAS  Google Scholar 

  49. Ragazzon PA, Bradshaw T, Matthews C, Iley J, Missailidis S (2009) The characterisation of flavone-DNA isoform interactions as a basis for anticancer drug development. Anticancer Res 29(6):2273–2283

    CAS  PubMed  Google Scholar 

  50. Křikavová R, Vančo J, Trávníček Z, Hutyra J, Dvořák Z (2016) Design and characterization of highly in vitro antitumor active ternary copper (II) complexes containing 2′-hydroxychalcone ligands. J Inorg Biochem 163:8–17

    Article  PubMed  CAS  Google Scholar 

  51. Spoerlein C, Mahal K, Schmidt H, Schobert R (2013) Effects of chrysin, apigenin, genistein and their homoleptic copper(II) complexes on the growth and metastatic potential of cancer cells. J Inorg Biochem 127:107–115

    Article  CAS  PubMed  Google Scholar 

  52. Chien S-Y, Wu Y-C, Chung J-G, Yang J-S, Lu H-F, Tsou M-F, Wood WG, Kuo S-J, Chen D-R (2009) Quercetin-induced apoptosis acts through mitochondrial and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum Exp Toxicol 28(8):493–503

    Article  CAS  PubMed  Google Scholar 

  53. Kumar S, Pandey A (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J (ID 162750), pp 1–16

    Google Scholar 

  54. Ong CS, Tran E, Nguyen TTT, Ong CK, Lee SK, Lee JJ, Ng CP, Leong C, Huynh H (2004) Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in Bad and hypophosphorylated retinoblastoma expressions. Oncol Rep 11(3):727–733

    CAS  PubMed  Google Scholar 

  55. Khan I, Paul S, Jakhar R, Bhardwaj M, Han J, Kang SC (2016) Novel quercetin derivative TEF induces ER stress and mitochondria-mediated apoptosis in human colon cancer HCT-116 cells. Biomed Pharmacother 84:789–799

    Article  CAS  PubMed  Google Scholar 

  56. Liao H, Bao X, Zhu J, Qu J, Sun Y, Ma X, Wang E, Guo X, Kang Q, Zhen Y (2015) O-Alkylated derivatives of quercetin induce apoptosis of MCF-7 cells via a caspase-independent mitochondrial pathway. Chem Biol Interact 242:91–98

    Article  CAS  PubMed  Google Scholar 

  57. Bao XR, Liao H, Qu J, Sun Y, Guo X, Wang EX, Zhen YH (2016) Synthesis, characterization and cytotoxicity of alkylated quercetin derivatives. Iran J Pharm Res 15(3):329–335

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tan M, Zhu J, Pan Y, Chen Z, Liang H, Liu H, Wang H (2009) Synthesis, cytotoxic activity, and DNA binding properties of copper (II) complexes with hesperetin, naringenin, and apigenin. Bioinorg Chem Appl 2009:347872

    Article  PubMed Central  Google Scholar 

  59. Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM (2012) Membrane fluidization & eryptotic properties of hesperidin-copper complex. RSC Adv 2(29):11138–11146

    Article  CAS  Google Scholar 

  60. Etcheverry SB, Ferrer EG, Naso L, Rivadeneira J, Salinas V, Williams PA (2008) Antioxidant effects of the VO(IV) hesperidin complex and its role in cancer chemoprevention. J Biol Inorg Chem 13:435–447

    Article  CAS  PubMed  Google Scholar 

  61. Wu Q, Needs PW, Lu Y, Kroon PA, Ren D, Yang X (2018) Different antitumor effects of quercetin, quercetin-3′-sulfate and quercetin-3-glucuronide in human breast cancer MCF-7 cells. Food Funct 9(3):1736–1746

    Article  CAS  PubMed  Google Scholar 

  62. Liu H, Zhou M (2017) Antitumor effect of Quercetin on Y79 retinoblastoma cells via activation of JNK and p38 MAPK pathways. BMC Complement Altern Med 17:531–538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhang JY, Yi T, Liu J, Zhao ZZ, Chen HB (2013) Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells. J Agric Food Chem 61(9):2188–2195

    Article  CAS  PubMed  Google Scholar 

  64. Tan J, Wang B, Zhu L (2009) DNA binding and oxidative DNA damage induced by a quercetin copper (II) complex: potential mechanism of its antitumor properties. J Biol Inorg Chem 14(5):727–739

    Article  CAS  PubMed  Google Scholar 

  65. Gokbulut AA, Apohan E, Baran Y (2013) Resveratrol and quercetin-induced apoptosis of human 232B4 chronic lymphocytic leukemia cells by activation of caspase-3 and cell cycle arrest. Hematology 18(3):144–150

    Article  CAS  PubMed  Google Scholar 

  66. Niu G, Yin S, Xie S, Li Y, Nie D, Ma L, Wang X, Wu Y (2011) Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells. Acta Biochim Biophys Sin 43(1):30–37

    Article  CAS  PubMed  Google Scholar 

  67. Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S (2006) Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr 136(11):2715–2721

    Article  CAS  PubMed  Google Scholar 

  68. Chou CC, Yang JS, Lu HF, Ip SW, Lo C, Wu CC, Lin JP, Tang NY, Chung JG, Chou MJ, Teng YH, Chen DR (2010) Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 33(8):1181–1191

    Article  CAS  PubMed  Google Scholar 

  69. Lakroun Z, Kebieche M, Lahouel A, Zama D, Desor F, Soulimani R (2015) Oxidative stress and brain mitochondria swelling induced by endosulfan and protective role of quercetin in rat. Environ Sci Pollut Res Int 22(10):7776–7781

    Article  CAS  PubMed  Google Scholar 

  70. Psotova J, Chlopcikova S, Grambal F, Simanek V, Ulrichova J (2002) Influence of silymarin and its flavonolignans on doxorubicin-iron induced lipid peroxidation in rat heart microsomes and mitochondria in comparison with quercetin. Phytother Res 16(Suppl. 1):S63–S67

    Article  CAS  PubMed  Google Scholar 

  71. Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S (2010) The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol 649(1–3):84–91

    Article  CAS  Google Scholar 

  72. Yoshino S, Hara A, Sakakibara H, Kawabata K, Tokumura A, Ishisaka A, Kawai Y, Terao J (2011) Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition 27(7–8):847–852

    Article  CAS  PubMed  Google Scholar 

  73. Zhang XM, Chen J, Xia YG, Xu Q (2005) Apoptosis of murine melanoma B16-BL6 cells induced by quercetin targeting mitochondria, inhibiting expression of PKC-α and translocating PKC-δ. Cancer Chemother Pharmacol 55(3):251–262

    Article  CAS  PubMed  Google Scholar 

  74. De Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF (2016) Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv 34(5):532–549

    Article  PubMed  CAS  Google Scholar 

  75. Jakubowicz-Gil J, Langner E, Bądziul D, Wertel I, Rzeski W (2014) Quercetin and sorafenib as a novel and effective couple in programmed cell death induction in human gliomas. Neurotox Res 26(1):64–77

    Article  CAS  PubMed  Google Scholar 

  76. Galati G, O’brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37(3):287–303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Done for their technical assistance and the Research Fund of Bursa Uludag University for the financial support given to the research project (Project Number OUAP (F)–2014/27).

Funding

This work was supported by grants from the Research Fund of Bursa Uludag University for the financial support given to the research Project (Project Number OUAP (F)–2014/27).

Author information

Authors and Affiliations

Authors

Contributions

FA, HMG, and EU contributed to the study design, FA, HMG, ME and PA performed experiments, FA and HMG, performed the analysis of the data, SS setup und performed phenolic contents and antioxidant capacities of complexes, FA and HMG, contributed to the writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ferda Ari.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutlu Gençkal, H., Erkisa, M., Alper, P. et al. Mixed ligand complexes of Co(II), Ni(II) and Cu(II) with quercetin and diimine ligands: synthesis, characterization, anti-cancer and anti-oxidant activity. J Biol Inorg Chem 25, 161–177 (2020). https://doi.org/10.1007/s00775-019-01749-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01749-z

Keywords

Navigation