Skip to main content

Monofunctional platinum(II) compounds and nucleolar stress: is phenanthriplatin unique?

Abstract

Platinum anticancer therapeutics are widely used in a variety of chemotherapy regimens. Recent work has revealed that the cytotoxicity of oxaliplatin and phenanthriplatin is through induction of ribosome biogenesis stress pathways, differentiating them from cisplatin and other compounds that mainly work through DNA damage response mechanisms. To probe the structure–activity relationships in phenanthriplatin’s ability to cause nucleolar stress, a series of monofunctional platinum(II) compounds differing in ring number, size and orientation was tested by nucleophosmin (NPM1) relocalization assays using A549 cells. Phenanthriplatin was found to be unique among these compounds in inducing NPM1 relocalization. To decipher underlying reasons, computational predictions of steric bulk, platinum(II) compound surface length and hydrophobicity were performed for all compounds. Of the monofunctional platinum(II) compounds tested, phenanthriplatin has the highest calculated hydrophobicity and volume but does not exhibit the largest distance from platinum(II) to the surface. Thus, spatial orientation and/or hydrophobicity caused by the presence of a third aromatic ring may be significant factors in the ability of phenanthriplatin to cause nucleolar stress.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699. https://doi.org/10.1038/205698a0

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:nrc2167. https://doi.org/10.1038/nrc2167

    Article  CAS  Google Scholar 

  3. 3.

    Johnstone TC, Park GY, Lippard SJ (2014) Understanding and improving platinum anticancer drugs—phenanthriplatin. Anticancer Res 34:471–476

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Sutton EC, McDevitt CE, Yglesias MV et al (2019) Tracking the cellular targets of platinum anticancer drugs: current tools and emergent methods. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2019.118984

    Article  Google Scholar 

  5. 5.

    Park GY, Wilson JJ, Song Y, Lippard SJ (2012) Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile. Proc Natl Acad Sci 109:11987–11992. https://doi.org/10.1073/pnas.1207670109

    Article  PubMed  Google Scholar 

  6. 6.

    Almaqwashi AA, Zhou W, Naufer MN et al (2019) DNA intercalation facilitates efficient DNA-targeted covalent binding of phenanthriplatin. J Am Chem Soc 141:1537–1545. https://doi.org/10.1021/jacs.8b10252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Riddell IA, Agama K, Park GY et al (2016) Phenanthriplatin acts as a covalent poison of topoisomerase II cleavage complexes. ACS Chem Biol 11:2996–3001. https://doi.org/10.1021/acschembio.6b00565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kellinger MW, Park GY, Chong J et al (2013) Effect of a monofunctional phenanthriplatin-DNA adduct on RNA polymerase II transcriptional fidelity and translesion synthesis. J Am Chem Soc 135:13054–13061. https://doi.org/10.1021/ja405475y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Gregory MT, Park GY, Johnstone TC et al (2014) Structural and mechanistic studies of polymerase η bypass of phenanthriplatin DNA damage. Proc Natl Acad Sci U S A 111:9133–9138. https://doi.org/10.1073/pnas.1405739111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Facchetti G, Rimoldi I (2019) Anticancer platinum(II) complexes bearing N-heterocycle rings. Bioorg Med Chem Lett 29:1257–1263. https://doi.org/10.1016/j.bmcl.2019.03.045

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Bruno PM, Liu Y, Park GY et al (2017) A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23:461–471. https://doi.org/10.1038/nm.4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Dhara SC (1970) A rapid method for the synthesis of cis-[Pt (NH3) 2Cl2]. Indian J Chem 8:193

    Google Scholar 

  13. 13.

    Okada T, El-Mehasseb IM, Kodaka M et al (2001) Mononuclear platinum(II) complex with 2-phenylpyridine ligands showing high cytotoxicity against mouse sarcoma 180 cells acquiring high cisplatin resistance. J Med Chem 44:4661–4667. https://doi.org/10.1021/jm010203d

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Bursac S, Brdovcak MC, Donati G, Volarevic S (2014) Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta 1842:817–830. https://doi.org/10.1016/j.bbadis.2013.08.014

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Nicolas E, Parisot P, Pinto-Monteiro C et al (2016) Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat Commun 7:11390. https://doi.org/10.1038/ncomms11390

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  17. 17.

    Rueden CT, Schindelin J, Hiner MC et al (2017) Image J2: imageJ for the next generation of scientific image data. BMC Bioinform 18:529. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  18. 18.

    van der Walt S, Schönberger JL, Nunez-Iglesias J et al (2014) Scikit-image: image processing in Python. PeerJ 2:e453. https://doi.org/10.7717/peerj.453

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Frisch M, Schlegel H, Scuseria G et al (2016) Gaussian09. Gaussian Inc., Wallingford

    Google Scholar 

  20. 20.

    Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Perdew J, Burke K, Ernzerhof M (1997) Errata: generalized gradient approximation made simple. Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  22. 22.

    Pansini F, Neto A, de Campos M, de Aquino R (2017) Effects of all-electron basis sets and the scalar relativistic corrections in the structure and electronic properties of niobium clusters. J Phys Chem A 121:5728–5734

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Marenich A, Cramer C, Truhlar D (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  24. 24.

    Butler K, Hendon C, Walsh A (2014) Electronic chemical potentials of porous metal-organic frameworks. J Am Chem Soc 136:2703–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Blochl P (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  CAS  Google Scholar 

  26. 26.

    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  27. 27.

    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558

    Article  CAS  Google Scholar 

  28. 28.

    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  29. 29.

    Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  30. 30.

    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  31. 31.

    Yang K, Wang M, Zhao Y et al (2016) A redox mechanism underlying nucleolar stress sensing by nucleophosmin. Nat Commun 7:13599. https://doi.org/10.1038/ncomms13599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Chen Y, Guo Z, Parsons S, Sadler PJ (1998) Stereospecific and kinetic control over the hydrolysis of a sterically hindered platinum picoline anticancer complex. Chem Eur J 4:672–676. https://doi.org/10.1002/(SICI)1521-3765(19980416)4:4%3c672:AID-CHEM672%3e3.0.CO;2-8

    Article  CAS  Google Scholar 

  33. 33.

    Johnstone TC, Lippard SJ (2014) The chiral potential of phenanthriplatin and its influence on guanine binding. J Am Chem Soc 136:2126–2134. https://doi.org/10.1021/ja4125115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation [CHE1710721 to VJD], the NIH [T32 GM007759-29 to ECS] and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation [ACI-1548562]. Computations were also performed on the PICS Coeus high performance computer, which is supported by the National Science Foundation [1624776]. This work is also supported by the Department of Chemistry and Biochemistry, Department of Biology, Institute of Molecular Biology and the Material Science Institute at the University of Oregon.

Author information

Affiliations

Authors

Contributions

CEM: conceptualization, investigation, validation, writing original draft, visualization, and supervision. MVY: software, investigation, formal analysis, data curation, writing review and editing, and visualization. AMM: methodology, software, formal analysis, data curation, writing review and editing, and visualization. ECS: conceptualization, methodology, data curation, writing review and editing. MY: software, investigation, data curation, writing review and editing. CHH: project administration, funding acquisition, writing review and editing. VJD: project administration, funding acquisition, writing review and editing.

Corresponding author

Correspondence to Victoria J. DeRose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McDevitt, C.E., Yglesias, M.V., Mroz, A.M. et al. Monofunctional platinum(II) compounds and nucleolar stress: is phenanthriplatin unique?. J Biol Inorg Chem 24, 899–908 (2019). https://doi.org/10.1007/s00775-019-01707-9

Download citation

Keywords

  • Platinum
  • Anticancer drug
  • Cell death
  • Structure–activity relationship
  • Computational chemistry
  • Imaging
  • Nucleolus