JBIC Journal of Biological Inorganic Chemistry

, Volume 24, Issue 6, pp 899–908 | Cite as

Monofunctional platinum(II) compounds and nucleolar stress: is phenanthriplatin unique?

  • Christine E. McDevitt
  • Matthew V. Yglesias
  • Austin M. Mroz
  • Emily C. Sutton
  • Min Chieh Yang
  • Christopher H. Hendon
  • Victoria J. DeRoseEmail author
Original Paper
Part of the following topical collections:
  1. Joan Broderick: Papers in Celebration of Her 2019 ACS Alfred Bader Award in Bioinorganic or Bioorganic Chemistry


Platinum anticancer therapeutics are widely used in a variety of chemotherapy regimens. Recent work has revealed that the cytotoxicity of oxaliplatin and phenanthriplatin is through induction of ribosome biogenesis stress pathways, differentiating them from cisplatin and other compounds that mainly work through DNA damage response mechanisms. To probe the structure–activity relationships in phenanthriplatin’s ability to cause nucleolar stress, a series of monofunctional platinum(II) compounds differing in ring number, size and orientation was tested by nucleophosmin (NPM1) relocalization assays using A549 cells. Phenanthriplatin was found to be unique among these compounds in inducing NPM1 relocalization. To decipher underlying reasons, computational predictions of steric bulk, platinum(II) compound surface length and hydrophobicity were performed for all compounds. Of the monofunctional platinum(II) compounds tested, phenanthriplatin has the highest calculated hydrophobicity and volume but does not exhibit the largest distance from platinum(II) to the surface. Thus, spatial orientation and/or hydrophobicity caused by the presence of a third aromatic ring may be significant factors in the ability of phenanthriplatin to cause nucleolar stress.

Graphic abstract


Platinum Anticancer drug Cell death Structure–activity relationship Computational chemistry Imaging Nucleolus 



This work was supported by the National Science Foundation [CHE1710721 to VJD], the NIH [T32 GM007759-29 to ECS] and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation [ACI-1548562]. Computations were also performed on the PICS Coeus high performance computer, which is supported by the National Science Foundation [1624776]. This work is also supported by the Department of Chemistry and Biochemistry, Department of Biology, Institute of Molecular Biology and the Material Science Institute at the University of Oregon.

Author contributions

CEM: conceptualization, investigation, validation, writing original draft, visualization, and supervision. MVY: software, investigation, formal analysis, data curation, writing review and editing, and visualization. AMM: methodology, software, formal analysis, data curation, writing review and editing, and visualization. ECS: conceptualization, methodology, data curation, writing review and editing. MY: software, investigation, data curation, writing review and editing. CHH: project administration, funding acquisition, writing review and editing. VJD: project administration, funding acquisition, writing review and editing.


  1. 1.
    Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699. CrossRefGoogle Scholar
  2. 2.
    Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:nrc2167. CrossRefGoogle Scholar
  3. 3.
    Johnstone TC, Park GY, Lippard SJ (2014) Understanding and improving platinum anticancer drugs—phenanthriplatin. Anticancer Res 34:471–476Google Scholar
  4. 4.
    Sutton EC, McDevitt CE, Yglesias MV et al (2019) Tracking the cellular targets of platinum anticancer drugs: current tools and emergent methods. Inorg Chim Acta. Google Scholar
  5. 5.
    Park GY, Wilson JJ, Song Y, Lippard SJ (2012) Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile. Proc Natl Acad Sci 109:11987–11992. CrossRefGoogle Scholar
  6. 6.
    Almaqwashi AA, Zhou W, Naufer MN et al (2019) DNA intercalation facilitates efficient DNA-targeted covalent binding of phenanthriplatin. J Am Chem Soc 141:1537–1545. CrossRefGoogle Scholar
  7. 7.
    Riddell IA, Agama K, Park GY et al (2016) Phenanthriplatin acts as a covalent poison of topoisomerase II cleavage complexes. ACS Chem Biol 11:2996–3001. CrossRefGoogle Scholar
  8. 8.
    Kellinger MW, Park GY, Chong J et al (2013) Effect of a monofunctional phenanthriplatin-DNA adduct on RNA polymerase II transcriptional fidelity and translesion synthesis. J Am Chem Soc 135:13054–13061. CrossRefGoogle Scholar
  9. 9.
    Gregory MT, Park GY, Johnstone TC et al (2014) Structural and mechanistic studies of polymerase η bypass of phenanthriplatin DNA damage. Proc Natl Acad Sci U S A 111:9133–9138. CrossRefGoogle Scholar
  10. 10.
    Facchetti G, Rimoldi I (2019) Anticancer platinum(II) complexes bearing N-heterocycle rings. Bioorg Med Chem Lett 29:1257–1263. CrossRefGoogle Scholar
  11. 11.
    Bruno PM, Liu Y, Park GY et al (2017) A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23:461–471. CrossRefGoogle Scholar
  12. 12.
    Dhara SC (1970) A rapid method for the synthesis of cis-[Pt (NH3) 2Cl2]. Indian J Chem 8:193Google Scholar
  13. 13.
    Okada T, El-Mehasseb IM, Kodaka M et al (2001) Mononuclear platinum(II) complex with 2-phenylpyridine ligands showing high cytotoxicity against mouse sarcoma 180 cells acquiring high cisplatin resistance. J Med Chem 44:4661–4667. CrossRefGoogle Scholar
  14. 14.
    Bursac S, Brdovcak MC, Donati G, Volarevic S (2014) Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta 1842:817–830. CrossRefGoogle Scholar
  15. 15.
    Nicolas E, Parisot P, Pinto-Monteiro C et al (2016) Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat Commun 7:11390. CrossRefGoogle Scholar
  16. 16.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. CrossRefGoogle Scholar
  17. 17.
    Rueden CT, Schindelin J, Hiner MC et al (2017) Image J2: imageJ for the next generation of scientific image data. BMC Bioinform 18:529. CrossRefGoogle Scholar
  18. 18.
    van der Walt S, Schönberger JL, Nunez-Iglesias J et al (2014) Scikit-image: image processing in Python. PeerJ 2:e453. CrossRefGoogle Scholar
  19. 19.
    Frisch M, Schlegel H, Scuseria G et al (2016) Gaussian09. Gaussian Inc., WallingfordGoogle Scholar
  20. 20.
    Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  21. 21.
    Perdew J, Burke K, Ernzerhof M (1997) Errata: generalized gradient approximation made simple. Phys Rev Lett 78:1396CrossRefGoogle Scholar
  22. 22.
    Pansini F, Neto A, de Campos M, de Aquino R (2017) Effects of all-electron basis sets and the scalar relativistic corrections in the structure and electronic properties of niobium clusters. J Phys Chem A 121:5728–5734CrossRefGoogle Scholar
  23. 23.
    Marenich A, Cramer C, Truhlar D (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  24. 24.
    Butler K, Hendon C, Walsh A (2014) Electronic chemical potentials of porous metal-organic frameworks. J Am Chem Soc 136:2703–2706CrossRefGoogle Scholar
  25. 25.
    Blochl P (1994) Projector augmented-wave method. Phys Rev B 50:17953CrossRefGoogle Scholar
  26. 26.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758CrossRefGoogle Scholar
  27. 27.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558CrossRefGoogle Scholar
  28. 28.
    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169CrossRefGoogle Scholar
  29. 29.
    Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269. CrossRefGoogle Scholar
  30. 30.
    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. CrossRefGoogle Scholar
  31. 31.
    Yang K, Wang M, Zhao Y et al (2016) A redox mechanism underlying nucleolar stress sensing by nucleophosmin. Nat Commun 7:13599. CrossRefGoogle Scholar
  32. 32.
    Chen Y, Guo Z, Parsons S, Sadler PJ (1998) Stereospecific and kinetic control over the hydrolysis of a sterically hindered platinum picoline anticancer complex. Chem Eur J 4:672–676.;2-8 CrossRefGoogle Scholar
  33. 33.
    Johnstone TC, Lippard SJ (2014) The chiral potential of phenanthriplatin and its influence on guanine binding. J Am Chem Soc 136:2126–2134. CrossRefGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  • Christine E. McDevitt
    • 1
  • Matthew V. Yglesias
    • 1
    • 2
  • Austin M. Mroz
    • 1
    • 3
  • Emily C. Sutton
    • 2
    • 4
  • Min Chieh Yang
    • 1
    • 3
  • Christopher H. Hendon
    • 1
    • 3
  • Victoria J. DeRose
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Chemistry and Biochemistry1253 University of OregonEugeneUSA
  2. 2.Institute of Molecular Biology1229 University of OregonEugeneUSA
  3. 3.Materials Science Institute1252 University of OregonEugeneUSA
  4. 4.Department of Biology1210 University of OregonEugeneUSA

Personalised recommendations