Abstract
In order to shed light on metal-dependent mechanisms for O–O bond cleavage, and its microscopic reverse, we compare herein the electronic and geometric structures of O2-derived binuclear Co(III)– and Mn(III)–peroxo compounds. Binuclear metal peroxo complexes are proposed to form as intermediates during Mn-promoted photosynthetic H2O oxidation, and a Co-containing artificial leaf inspired by nature’s photosynthetic H2O oxidation catalyst. Crystallographic characterization of an extremely activated peroxo is made possible by working with substitution-inert, low-spin Co(III). Density functional theory (DFT) calculations show that the frontier orbitals of the Co(III)–peroxo compound differ noticeably from the analogous Mn(III)–peroxo compound. The highest occupied molecular orbital (HOMO) associated with the Co(III)–peroxo is more localized on the peroxo in an antibonding π*(O–O) orbital, whereas the HOMO of the structurally analogous Mn(III)–peroxo is delocalized over both the metal d-orbitals and peroxo π*(O–O) orbital. With low-spin d6 Co(III), filled t2g orbitals prevent π-back-donation from the doubly occupied antibonding π*(O–O) orbital onto the metal ion. This is not the case with high-spin d4 Mn(III), since these orbitals are half-filled. This weakens the peroxo O–O bond of the former relative to the latter.
This is a preview of subscription content, access via your institution.






References
Leslie M (2009) Science 323(5919):1286
Barber J (2009) Chem Soc Rev 38(1):185
Askerka M, Brudvig GW, Batista VS (2017) Acc Chem Res 50(1):41
Yano J, Yachandra V (2014) Chem Rev 114(8):4175
Nocera DG (2012) Acc Chem Res 45(5):767
Cox N, Pantazis DA, Neese F, Lubitz W (2013) Acc Chem Res 46(7):1588
Renger GJ (2011) Photochem Photobiol B Biol 104(1–2):35
Retegan M, Krewald V, Mamedov F, Neese F, Lubitz W, Cox N, Pantazis DA (2015) Chem Sci 7(1):72
Cox N, Retegan M, Neese F, Pantazis DA, Boussac A, Lubitz W (2014) Science 345(6198):804
Brudvig GW (2008) Philos Trans R Soc B Biol Sci 363(1494):1211
Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Acc Chem Res 42(12):1935
Betley TA, Wu Q, Van Voorhis T, Nocera DG (2008) Inorg Chem 47(6):1849
Armstrong FA (2008) Philos Trans R Soc B Biol Sci 363(1494):1263
Coggins MK, Brines LM, Kovacs JA (2013) Inorg Chem 52(21):12383
Shook RL, Gunderson WA, Greaves J, Ziller JW, Hendrich MP, Borovik AS (2008) J Am Chem Soc 130(28):8888
Rees JA, Martin-Diaconescu V, Kovacs JA, DeBeer S (2015) Inorg Chem 54(13):6410
Annaraj J, Cho J, Lee YM, Kim SY, Latifi R, De Visser SP, Nam W (2009) Angew Chem Int Ed 48(23):4150
Geiger RA, Leto DF, Chattopadhyay S, Dorlet P, Anxolabéhère-Mallart E, Jackson TA (2011) Inorg Chem 50(20):10190
Coggins MK, Sun X, Kwak Y, Solomon EI, Rybak-Akimova E, Kovacs JA (2013) J Am Chem Soc 135(15):5631
Poon PCY, Dedushko MA, Sun X, Yang G, Toledo S, Hayes EC, Johansen A, Rees JA, Stoll S, Rybak-Akimova E, Kovacs JA (2019) J Am Chem Soc (accepted).
Seo MS, Kim JY, Annaraj J, Kim Y, Lee YM, Kim SJ, Kim J, Nam W (2007) Angew Chem Int Ed 46(3):377
Vanatta RB, Strouse CE, Hanson LK, Valentine JS (1987) J Am Chem Soc 109(5):1425
Kitajima N, Komatsiizaki H, Hikichi S, Osawa M, Moro-oka Y (1994) J Am Chem Soc 116(25):11596
Singh UP, Sharma AK, Hikichi S, Komatsuzaki H, Moro-oka Y, Akita M (2006) Inorg Chim Acta 359(13):4407
Bossek U, Weyhermiiller T, Wieghardt K, Nuber B, Weiss J (1990) J Am Chem Soc 112(17):6387
Coggins MK, Martin-Diaconescu V, Debeer S, Kovacs JA (2013) J Am Chem Soc 135(11):4260
Brown CD, Neidig ML, Neibergall MB, Lipscomb JD, Solomon EI (2007) J Am Chem Soc 129(23):7427
Kovacs JA, Brines LM (2007) Acc Chem Res 40(7):501
Kovacs JA (2015) Acc Chem Res 48(10):2744
Brodsky CN, Hadt RG, Hayes D, Reinhart BJ, Li N, Chen LX, Nocera DG (2017) Proc Natl Acad Sci 114(15):3855
Smith PF, Hunt L, Laursen AB, Sagar V, Kaushik S, Calvinho KUD, Marotta G, Mosconi E, De Angelis F, Dismukes GC (2015) J Am Chem Soc 137(49):15460
Ballhausen CJ, Gray HB (1962) Inorg Chem 1:111
Gao Y, Åkermark T, Liu J, Sun L, Åkermark B (2009) J Am Chem Soc 131(25):8726
Volpe M, Hartnett H, Leeland JW, Wills K, Ogunshun M, Duncombe BJ, Wilson C, Blake AJ, McMaster J, Love JB (2009) Inorg Chem 48(12):5195
Schaefer WP, Marsh RE (1966) J Am Chem Soc 88(1):178
Sykes AG, Weil JA (1970) Prog Inorg Chem 13:1–106
Kotani H, Hong D, Satonaka K, Ishizuka T, Kojima T (2019) Inorg Chem 58(6):3676
Seo JS, Hynes RC, Williams D, Chin J (1998) J Am Chem Soc 120(38):9943
Givaja G, Volpe M, Edwards MA, Blake AJ, Wilson C, Schröder M, Love JB (2007) Angew Chem Int Ed 46(4):584
Wang D, Lindeman SV, Fiedler AT (2015) Inorg Chem 54(17):8744
Brines LM, Shearer J, Fender JK, Schweitzer D, Shoner SC, Barnhart D, Kaminsky W, Lovell S, Kovacs JA (2007) Inorg Chem 46(22):9267
Otwinowski Z, Minor W (1997) In: Sweet RM, Carter CW (eds) Macromolecular crystallography, 1st edn. Academic Press, New York
Mackay S, Edwards C, Henderson A, Gilmore C, Stewart N, Shankland K, Donald A (1997) maXus 1.1, A computer program for the solution and refinement of crystal structures from X-ray diffraction data, University of Glasgow, Scotland, Nonius, The Netherlands, and MacScience, Japan (1997).
Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Crystallogr 27(3):435
Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Crystallogr 32(1):115
Sheldrick GM (1997) SHELXS97 and SHELXL97. University of Göttingen, Göttingen, Program for Crystal Structure Solution and Refinement
Sheldrick GM (2015) Acta Crystallogr Sect C Struct Chem 71(Md):3
Burnett MN, Johnson CK (1996) Oak Ridge National Laboratory Report ORNL-6895
Persistence of Vision Pty. Ltd. (2013) Persistence of Vision Raytracer Version 3.7. Williamstown, Victoria, Australia
Neese F (2012) WIREs Comput Mol Sci 2:73
Barone V, Cossi M (1998) J Phys Chem A 102(11):1995
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J Comput Chem 25:1605–1612
Swartz RD, Coggins MK, Kaminsky W, Kovacs JA (2011) J Am Chem Soc 133(11):3954
Nurdin L, Spasyuk DM, Fairburn L, Piers WE, Maron L (2018) J Am Chem Soc 140(47):16094
Ramprasad D, Gilicinski AG, Markley TJ, Pez GP (1994) Inorg Chem 33(13):2841
Rigsby ML, Mandal S, Nam W, Spencer LC, Llobet A, Stahl SS (2012) Chem Sci 3(10):3058
Ludovici C, Fröhlich R, Vogtt K, Mamat B, Lübben M (2003) Eur J Biochem 269(10):2630
Howard-Jones AR, Adam V, Cowley A, Baldwin JE, Bourgeois D (2009) Photochem Photobiol Sci 8(8):1150
Fukuzumi S, Mandal S, Mase K, Ohkubo K, Park H, Benet-Buchholz J, Nam W, Llobet A (2012) J Am Chem Soc 134(24):9906
Cho YI, Joseph DM, Rose M (2013) J Inorg Chem 52(23):13298
Wang HY, Mijangos E, Ott S, Thapper A (2014) Angew Chem Int Ed 53(52):14499
Vaska L (1976) Acc Chem Res 9(5):175
Fritch JR, Christoph GG, Schaefer WP (1973) Inorg Chem 12(9):2170
Coggins MK, Toledo S, Shaffer E, Kaminsky W, Shearer J, Kovacs JA (2012) Inorg Chem 51(12):6633
Acknowledgements
We wish to thank the National Science Foundation (Division of Chemistry) for funding (CHE-1664682).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Dedushko, M.A., Schweitzer, D., Blakely, M.N. et al. Geometric and electronic structure of a crystallographically characterized thiolate-ligated binuclear peroxo-bridged cobalt(III) complex. J Biol Inorg Chem 24, 919–926 (2019). https://doi.org/10.1007/s00775-019-01686-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00775-019-01686-x
Keywords
- Dioxygen activation
- Transition-metal peroxo chemistry
- Electronic structure
- X-ray crystallography