Skip to main content

Geometric and electronic structure of a crystallographically characterized thiolate-ligated binuclear peroxo-bridged cobalt(III) complex

Abstract

In order to shed light on metal-dependent mechanisms for O–O bond cleavage, and its microscopic reverse, we compare herein the electronic and geometric structures of O2-derived binuclear Co(III)– and Mn(III)–peroxo compounds. Binuclear metal peroxo complexes are proposed to form as intermediates during Mn-promoted photosynthetic H2O oxidation, and a Co-containing artificial leaf inspired by nature’s photosynthetic H2O oxidation catalyst. Crystallographic characterization of an extremely activated peroxo is made possible by working with substitution-inert, low-spin Co(III). Density functional theory (DFT) calculations show that the frontier orbitals of the Co(III)–peroxo compound differ noticeably from the analogous Mn(III)–peroxo compound. The highest occupied molecular orbital (HOMO) associated with the Co(III)–peroxo is more localized on the peroxo in an antibonding π*(O–O) orbital, whereas the HOMO of the structurally analogous Mn(III)–peroxo is delocalized over both the metal d-orbitals and peroxo π*(O–O) orbital. With low-spin d6 Co(III), filled t2g orbitals prevent π-back-donation from the doubly occupied antibonding π*(O–O) orbital onto the metal ion. This is not the case with high-spin d4 Mn(III), since these orbitals are half-filled. This weakens the peroxo O–O bond of the former relative to the latter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

References

  1. Leslie M (2009) Science 323(5919):1286

    Article  CAS  PubMed  Google Scholar 

  2. Barber J (2009) Chem Soc Rev 38(1):185

    Article  CAS  PubMed  Google Scholar 

  3. Askerka M, Brudvig GW, Batista VS (2017) Acc Chem Res 50(1):41

    Article  CAS  PubMed  Google Scholar 

  4. Yano J, Yachandra V (2014) Chem Rev 114(8):4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nocera DG (2012) Acc Chem Res 45(5):767

    Article  CAS  PubMed  Google Scholar 

  6. Cox N, Pantazis DA, Neese F, Lubitz W (2013) Acc Chem Res 46(7):1588

    Article  CAS  PubMed  Google Scholar 

  7. Renger GJ (2011) Photochem Photobiol B Biol 104(1–2):35

    Article  CAS  Google Scholar 

  8. Retegan M, Krewald V, Mamedov F, Neese F, Lubitz W, Cox N, Pantazis DA (2015) Chem Sci 7(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cox N, Retegan M, Neese F, Pantazis DA, Boussac A, Lubitz W (2014) Science 345(6198):804

    Article  CAS  PubMed  Google Scholar 

  10. Brudvig GW (2008) Philos Trans R Soc B Biol Sci 363(1494):1211

    Article  CAS  Google Scholar 

  11. Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Acc Chem Res 42(12):1935

    Article  CAS  PubMed  Google Scholar 

  12. Betley TA, Wu Q, Van Voorhis T, Nocera DG (2008) Inorg Chem 47(6):1849

    Article  CAS  PubMed  Google Scholar 

  13. Armstrong FA (2008) Philos Trans R Soc B Biol Sci 363(1494):1263

    Article  CAS  Google Scholar 

  14. Coggins MK, Brines LM, Kovacs JA (2013) Inorg Chem 52(21):12383

    Article  CAS  PubMed  Google Scholar 

  15. Shook RL, Gunderson WA, Greaves J, Ziller JW, Hendrich MP, Borovik AS (2008) J Am Chem Soc 130(28):8888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rees JA, Martin-Diaconescu V, Kovacs JA, DeBeer S (2015) Inorg Chem 54(13):6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Annaraj J, Cho J, Lee YM, Kim SY, Latifi R, De Visser SP, Nam W (2009) Angew Chem Int Ed 48(23):4150

    Article  CAS  Google Scholar 

  18. Geiger RA, Leto DF, Chattopadhyay S, Dorlet P, Anxolabéhère-Mallart E, Jackson TA (2011) Inorg Chem 50(20):10190

    Article  CAS  PubMed  Google Scholar 

  19. Coggins MK, Sun X, Kwak Y, Solomon EI, Rybak-Akimova E, Kovacs JA (2013) J Am Chem Soc 135(15):5631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poon PCY, Dedushko MA, Sun X, Yang G, Toledo S, Hayes EC, Johansen A, Rees JA, Stoll S, Rybak-Akimova E, Kovacs JA (2019) J Am Chem Soc (accepted).

  21. Seo MS, Kim JY, Annaraj J, Kim Y, Lee YM, Kim SJ, Kim J, Nam W (2007) Angew Chem Int Ed 46(3):377

    Article  CAS  Google Scholar 

  22. Vanatta RB, Strouse CE, Hanson LK, Valentine JS (1987) J Am Chem Soc 109(5):1425

    Article  Google Scholar 

  23. Kitajima N, Komatsiizaki H, Hikichi S, Osawa M, Moro-oka Y (1994) J Am Chem Soc 116(25):11596

    Article  CAS  Google Scholar 

  24. Singh UP, Sharma AK, Hikichi S, Komatsuzaki H, Moro-oka Y, Akita M (2006) Inorg Chim Acta 359(13):4407

    Article  CAS  Google Scholar 

  25. Bossek U, Weyhermiiller T, Wieghardt K, Nuber B, Weiss J (1990) J Am Chem Soc 112(17):6387

    Article  CAS  Google Scholar 

  26. Coggins MK, Martin-Diaconescu V, Debeer S, Kovacs JA (2013) J Am Chem Soc 135(11):4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown CD, Neidig ML, Neibergall MB, Lipscomb JD, Solomon EI (2007) J Am Chem Soc 129(23):7427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kovacs JA, Brines LM (2007) Acc Chem Res 40(7):501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kovacs JA (2015) Acc Chem Res 48(10):2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brodsky CN, Hadt RG, Hayes D, Reinhart BJ, Li N, Chen LX, Nocera DG (2017) Proc Natl Acad Sci 114(15):3855

    Article  CAS  PubMed  Google Scholar 

  31. Smith PF, Hunt L, Laursen AB, Sagar V, Kaushik S, Calvinho KUD, Marotta G, Mosconi E, De Angelis F, Dismukes GC (2015) J Am Chem Soc 137(49):15460

    Article  CAS  PubMed  Google Scholar 

  32. Ballhausen CJ, Gray HB (1962) Inorg Chem 1:111

    Article  CAS  Google Scholar 

  33. Gao Y, Åkermark T, Liu J, Sun L, Åkermark B (2009) J Am Chem Soc 131(25):8726

    Article  CAS  PubMed  Google Scholar 

  34. Volpe M, Hartnett H, Leeland JW, Wills K, Ogunshun M, Duncombe BJ, Wilson C, Blake AJ, McMaster J, Love JB (2009) Inorg Chem 48(12):5195

    Article  CAS  PubMed  Google Scholar 

  35. Schaefer WP, Marsh RE (1966) J Am Chem Soc 88(1):178

    Article  CAS  Google Scholar 

  36. Sykes AG, Weil JA (1970) Prog Inorg Chem 13:1–106

    CAS  Google Scholar 

  37. Kotani H, Hong D, Satonaka K, Ishizuka T, Kojima T (2019) Inorg Chem 58(6):3676

    Article  CAS  PubMed  Google Scholar 

  38. Seo JS, Hynes RC, Williams D, Chin J (1998) J Am Chem Soc 120(38):9943

    Article  CAS  Google Scholar 

  39. Givaja G, Volpe M, Edwards MA, Blake AJ, Wilson C, Schröder M, Love JB (2007) Angew Chem Int Ed 46(4):584

    Article  CAS  Google Scholar 

  40. Wang D, Lindeman SV, Fiedler AT (2015) Inorg Chem 54(17):8744

    Article  CAS  PubMed  Google Scholar 

  41. Brines LM, Shearer J, Fender JK, Schweitzer D, Shoner SC, Barnhart D, Kaminsky W, Lovell S, Kovacs JA (2007) Inorg Chem 46(22):9267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Otwinowski Z, Minor W (1997) In: Sweet RM, Carter CW (eds) Macromolecular crystallography, 1st edn. Academic Press, New York

    Google Scholar 

  43. Mackay S, Edwards C, Henderson A, Gilmore C, Stewart N, Shankland K, Donald A (1997) maXus 1.1, A computer program for the solution and refinement of crystal structures from X-ray diffraction data, University of Glasgow, Scotland, Nonius, The Netherlands, and MacScience, Japan (1997).

  44. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Crystallogr 27(3):435

    Google Scholar 

  45. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Crystallogr 32(1):115

    Article  CAS  Google Scholar 

  46. Sheldrick GM (1997) SHELXS97 and SHELXL97. University of Göttingen, Göttingen, Program for Crystal Structure Solution and Refinement

    Google Scholar 

  47. Sheldrick GM (2015) Acta Crystallogr Sect C Struct Chem 71(Md):3

    Article  CAS  Google Scholar 

  48. Burnett MN, Johnson CK (1996) Oak Ridge National Laboratory Report ORNL-6895

  49. Persistence of Vision Pty. Ltd. (2013) Persistence of Vision Raytracer Version 3.7. Williamstown, Victoria, Australia

    Google Scholar 

  50. Neese F (2012) WIREs Comput Mol Sci 2:73

    Article  CAS  Google Scholar 

  51. Barone V, Cossi M (1998) J Phys Chem A 102(11):1995

    Article  CAS  Google Scholar 

  52. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  53. Swartz RD, Coggins MK, Kaminsky W, Kovacs JA (2011) J Am Chem Soc 133(11):3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nurdin L, Spasyuk DM, Fairburn L, Piers WE, Maron L (2018) J Am Chem Soc 140(47):16094

    Article  CAS  PubMed  Google Scholar 

  55. Ramprasad D, Gilicinski AG, Markley TJ, Pez GP (1994) Inorg Chem 33(13):2841

    Article  CAS  Google Scholar 

  56. Rigsby ML, Mandal S, Nam W, Spencer LC, Llobet A, Stahl SS (2012) Chem Sci 3(10):3058

    Article  CAS  Google Scholar 

  57. Ludovici C, Fröhlich R, Vogtt K, Mamat B, Lübben M (2003) Eur J Biochem 269(10):2630

    Article  CAS  Google Scholar 

  58. Howard-Jones AR, Adam V, Cowley A, Baldwin JE, Bourgeois D (2009) Photochem Photobiol Sci 8(8):1150

    Article  CAS  PubMed  Google Scholar 

  59. Fukuzumi S, Mandal S, Mase K, Ohkubo K, Park H, Benet-Buchholz J, Nam W, Llobet A (2012) J Am Chem Soc 134(24):9906

    Article  CAS  PubMed  Google Scholar 

  60. Cho YI, Joseph DM, Rose M (2013) J Inorg Chem 52(23):13298

    Article  CAS  Google Scholar 

  61. Wang HY, Mijangos E, Ott S, Thapper A (2014) Angew Chem Int Ed 53(52):14499

    Article  CAS  Google Scholar 

  62. Vaska L (1976) Acc Chem Res 9(5):175

    Article  CAS  Google Scholar 

  63. Fritch JR, Christoph GG, Schaefer WP (1973) Inorg Chem 12(9):2170

    Article  CAS  Google Scholar 

  64. Coggins MK, Toledo S, Shaffer E, Kaminsky W, Shearer J, Kovacs JA (2012) Inorg Chem 51(12):6633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank the National Science Foundation (Division of Chemistry) for funding (CHE-1664682).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Kovacs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1896 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dedushko, M.A., Schweitzer, D., Blakely, M.N. et al. Geometric and electronic structure of a crystallographically characterized thiolate-ligated binuclear peroxo-bridged cobalt(III) complex. J Biol Inorg Chem 24, 919–926 (2019). https://doi.org/10.1007/s00775-019-01686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01686-x

Keywords

  • Dioxygen activation
  • Transition-metal peroxo chemistry
  • Electronic structure
  • X-ray crystallography