Abstract
In this paper, the catalytic effects of aminoguanidine and aminopurine groups in the second sphere of a FeIIIZnII complex that mimics the active site of the metallohydrolase purple acid phosphatase (PAP) are investigated, with a particular view on DNA as substrate. The ligand 3-(((3-((bis(2-(pyridin-2-yl)ethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)meth-yl)-2 hydroxy-5-methylbenzaldehyde—(H2L1bpea) was synthesized and its complex [(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea)](ClO4) was used as a base for comparison with similar complexes previously published in the literature. Subsequent modifications were conducted in the aldehyde group, where aminoguanidine (amig) and aminopurine (apur) were used as side chain derivatives. The complexes [(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea)](ClO4) (1), [(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea–amig)](ClO4) (2) and [(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea–apur)](ClO4) (3) were characterized by spectroscopic methods (infrared, UV–Vis) and ESI-MS spectrometry. Density functional theory (DFT) was also used to better understand the structure of the complexes. The hydrolytic activity of complexes 1, 2 and 3 was analyzed using both the model substrate 2,4-BDNPP (bis-(2,4-dinitrophenyl)phosphate) and DNA. Complexes 2 and 3, containing the derivatized ligands, have a significantly higher association constant (Kassoc≅ 1/KM) for the activated substrate 2,4-BDNPP compared to complex 1. The catalytic efficiency (kcat/KM) is also higher due to hydrogen bonds and/or π-stacking interactions between the substrate and the aminoguanidine or aminopurine groups present in 2 and 3, respectively. In the DNA cleavage assays, all complexes were able to cleave DNA, with 1 and 2 having higher catalytic activity than 3. In addition, when compared to previously analyzed complexes, complex 2 is one of the most active, having a kcat of 0.21 h−1.
Graphical abstract
Similar content being viewed by others
Abbreviations
- amig:
-
Aminoguanidine
- apur:
-
6-Aminopurine
- Ef :
-
Catalytic efficiency (kcat/KM)
- 2,4-BDNPP:
-
Bis(2,4-dinitrophenyl)phosphate
- 2,4-DNP:
-
2,4-Dinitrophenolate
- CD:
-
Circular dichroism
- Complex 1 :
-
[(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea)](ClO4)
- Complex 2 :
-
[(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea–amig)](ClO4)
- Complex 3 :
-
[(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea–apur)](ClO4)
- CT:
-
Charge transfer
- CT-DNA:
-
Calf thymus DNA
- CHES:
-
N-Cyclohexyl-2-aminoethanesulfonic acid
- Cmff:
-
2-Chloromethyl-4-methyl-6-formylphenol
- FeIIEDTA/DTT:
-
Ethylenediamine tetra acetic acid/dithiothreitol
- H2L1bpea:
-
3-(((3-((Bis(2-(pyridin-2-yl)ethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)meth-yl)-2 hydroxy-5-methylbenzaldehyde
- H2L1bpea–amig:
-
2-(3-(((3-((Bis(2-(pyridin-2-yl)ethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzylidene)hydrazinecarboximidamide
- H2L1bpea–apur:
-
2-((2-(9H-Purin-6-ylamino)ethylamino)methyl)-6-(((3-((bis(2-(pyridin-2-yl)ethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-methyl-phenol
- HEPES:
-
2-[4-(2-Hydroxyethyl)-piperazin-1-yl]ethanesulfonic acid
- Kassoc :
-
Association constant (≈ 1/KM)
- MES (from 4.5 to 6.5):
-
2-(N-Morpholino)ethanesulfonic acid
- PAP:
-
Purple acid phosphatase
- TD-DFT/TDA:
-
Tamm–Dancoff approximation
- TS:
-
Transition state
References
Wilcox DE (1996) Chem Rev 96:2435–2458. https://doi.org/10.1021/cr950043b
Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G (2006) Chem Rev 106:3338–3363. https://doi.org/10.1021/cr050318f
Schenk G, Mitić N, Hanson GR, Comba P (2013) Coord Chem Rev 257:473–482. https://doi.org/10.1016/j.ccr.2012.03.020
Twitchett MB, Sykes AG (1999) Eur J Inorg Chem 37:2105–2115
Klabunde T, Krebs B (1997) Struct Bond 89:177–198. https://doi.org/10.1007/3-540-62874-6_12
Schenk G, Ge Y, Carrington LE, Wynne CJ, Searle IR, Carroll BJ, Hamilton S, de Jersey J (1999) Arch Biochem Biophys 370:183–189. https://doi.org/10.1006/abbi.1999.1407
Durmus A, Eicken C, Sift BH, Kratel A, Kappi R, Hütterman J, Krebs B (1999) Eur J Biochem 260:709–716. https://doi.org/10.1046/j.1432-1327.1999.00230.x
Mitić N, Noble CJ, Gahan LR, Hanson GR, Schenk G (2009) J Am Chem Soc 131:8173–8179. https://doi.org/10.1021/ja900797u
Antonyuk SV, Olczak M, Olczak T, Ciuraszkiewicz J, Strange RW (2014) IUCrJ. 1(2):101–109. https://doi.org/10.1107/s205225251400400x
Kaija H, Alatalo SL, Halleen JM, Lindqvist Y, Schneider G, Väänänen HK, Vihko P (2002) Biochem Biophys Res Commun 292:128–132. https://doi.org/10.1006/bbrc.2002.6615
Bernhardt PV, Schenk G, Wilson GJ (2004) Biochemistry 43:10387–10392. https://doi.org/10.1021/bi0490338
Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA (2000) Bone 27:575–584. https://doi.org/10.1016/s8756-3282(00)00368-9
Moss DW, Raymond FD, Wile DB (1995) Crit Rev Clin Lab Sci 32:431–467. https://doi.org/10.3109/10408369509084690
Valizadeh M, Schenk G, Nash K, Oddie GW, Guddat LW, Hume DA, de Jersey J, Burke TR Jr, Hamilton S (2004) Arch Biochem Biophys 424:154–162. https://doi.org/10.1016/j.abb.2004.01.008
Feder D, Hussein WM, Clayton DJ, Kan M, Schenk G, McGeary RP, Guddat LW (2012) Chem Biol Drug Des 80:665–674. https://doi.org/10.1111/cbdd.12001
Hussein WM, Feder D, Schenk G, Guddat LW, McGeary RP (2018) Eur J Med Chem 157:462–479. https://doi.org/10.1016/j.ejmech.2018.08.004
Beck JL, McConachie LA, Summors AC, Arnold WN, Jersey JD, Zerner B (1986) Biochim Biophys Acta 869:61–68. https://doi.org/10.1016/0167-4838(86)90310-9
Tian J, Liao H (2018) Annu Rev Plant Biol. https://doi.org/10.1002/9781119312994.apr0525
Schenk G, Guddat LW, Carrington LE, Hume DA, Hamilton S, Jersey J (2000) Gene 250:117–125. https://doi.org/10.1016/s0378-1119(00)00186-4
Flanagan JU, Cassady AI, Schenk G, Guddat LW, Hume DA (2006) Gene 377:12–20. https://doi.org/10.1016/j.gene.2006.02.031
Robinson WD, Park J, Tran HT, Del Vecchio HA, Ying S, Zins JL, Patel K, McKnight TD, Plaxton WC (2012) J Exp Bot 63:6531–6542. https://doi.org/10.1093/jxb/ers309
Wang L, Lu S, Zhang Y, Li Z, Du X, Liu D (2014) J Integr Plant Biol 56:299–314. https://doi.org/10.1111/jipb.12184
Camargo TP, Maia FF, Chaves C, Souza B, Bortoluzzi AJ, Castilho N, Bortolotto T, Terenzi H, Castellano EE, Haase W, Tomkowicz Z, Peralta RA, Neves A (2015) J Inorg Biochem 146:77–88. https://doi.org/10.1016/j.jinorgbio.2015.02.017
Comba P, Gahan LR, Mereacre V, Hanson GR, Powell AK, Schenk G, Zajaczkowski-Fischer M (2012) Inorg Chem 51:12195–12209. https://doi.org/10.1021/ic301347t
Souza B, Kreft GL, Bortolotto T, Terenzi H, Bortoluzzi AJ, Castellano EE, Peralta RA, Domingos JB, Neves A (2013) Inorg Chem 52:3594–3596. https://doi.org/10.1021/ic400025j
Silva GAS, Amorim AL, Souza B, Gabriel P, Terenzi H, Nordlander E, Neves A, Peralta RA (2017) Dalton Trans 46:11380–11394. https://doi.org/10.1039/c7dt02035j
Camargo TP, Neves A, Peralta RA, Chaves C, Maia ECP, Lizarazo-Jaimes EH, Gomes DA, Bortolotto T, Norberto DR, Terenzi H, Tierney DL, Schenk G (2018) Inorg Chem 57:187–203. https://doi.org/10.1021/acs.inorgchem.7b02384
Comba P, Gahan LR, Hanson GR, Mereacre V, Noble CJ, Powell AK, Prisecaru I, Schenk G, Zajaczkowski-Fischer M (2012) Chem Eur J 18:1700–1710. https://doi.org/10.1002/chem.201100229
Peralta RA, Bortoluzzi AJ, Souza B, Jovito R, Xavier FR, Couto RA, Casellato A, Nome F, Dick A, Gahan LR, Schenk G, Hanson GR, Paula FC, Pereira-Maia EC, Machado SP, Severino PC, Pich C, Bortolotto T, Terenzi H, Castellano EE, Neves A, Riley MJ (2010) Inorg Chem 49:11421–11438. https://doi.org/10.1021/ic101433t
Piovezan C, Jovito R, Bortoluzzi AJ, Terenzi H, Fischer FL, Severino PC, Pich CT, Azzolini GG, Peralta RA, Rossi LM, Neves A (2010) Inorg Chem 49:2580–2582. https://doi.org/10.1021/ic902489j
Lanznaster M, Neves A, Bortoluzzi AJ, Szpoganicz B, Schwingel E (2002) Inorg Chem 41:5641–5643. https://doi.org/10.1021/ic025892d
Neves A, Lanznaster M, Bortoluzzi AJ, Peralta RA, Casellato A, Castellano EE, Herrald P, Riley MJ, Schenk G (2007) J Am Chem Soc 129:7486–7487. https://doi.org/10.1021/ja071184l
Lanznaster M, Neves A, Bortoluzzi AJ, Aires VVE, Szpoganicz B, Terenzi H, Severino PC, Fuller JM, Drew SC, Gahan LR, Hanson GR, Riley MJ, Schenk G (2005) J Biol Inorg Chem 10:319–332. https://doi.org/10.1007/s00775-005-0635-7
Smith SJ, Casellato A, Hadler KS, Mitić N, Riley MJ, Bortoluzzi AJ, Szpoganicz B, Schenk G, Neves A, Gahan LR (2007) J Biol Inorg Chem 12:1207–1220. https://doi.org/10.1007/s00775-007-0286-y
Schenk G, Peralta RA, Batista SC, Bortoluzzi AJ, Szpoganicz B, Dick AK, Herrald P, Hanson GR, Szilagyi RK, Riley MJ, Gahan LR, Neves A (2008) J Biol Inorg Chem 13:139–155. https://doi.org/10.1007/s00775-007-0305-z
Xavier FR, Neves A, Casellato A, Peralta RA, Bortoluzzi AJ, Szpoganicz B, Severino PC, Terenzi H, Tomkowicz Z, Ostrovsky S, Haase W, Ozarowski A, Krzystek J, Telser J, Schenk G, Gahan LR (2009) Inorg Chem 48:7905–7921. https://doi.org/10.1021/ic900831q
Smith SJ, Casellato A, Hadler KS, Mitić N, Riley MJ, Bortoluzzi AJ, Szpoganicz B, Peralta RA, Jovito R, Jr Horn, Bortoluzzi AJ, Noble CJ, Hanson GR, Stranger R, Jayaratne V, Cavigliasso G, Gahan LR, Schenk G, Nascimento OR, Cavalett A, Bortolotto T, Razzera G, Terenzi H, Neves A, Riley MJ (2012) Inorg Chem 51:2065–2078. https://doi.org/10.1021/ic201711p
Bosch D, Comba P, Gahan LR, Schenk G (2014) Inorg Chem 53:9036–9051. https://doi.org/10.1021/ic5009945
Roberts AE, Schenk G, Gahan LR (2015) Eur J Inorg Chem 2015:3076–3086. https://doi.org/10.1002/ejic.201500351
Bernhardt PV, Bosch S, Comba P, Gahan LR, Hanson GR, Mereacre V, Noble CJ, Powell AK, Schenk G, Wadepohl H (2015) Inorg Chem 54:7249–7263. https://doi.org/10.1021/acs.inorgchem.5b00628
Bosch S, Comba P, Hanson G, Noble C, Schenk G, Wadepohl H (2015) Chem Eur J 21:18269–18279. https://doi.org/10.1002/chem.201503348
Bosch S, Comba P, Gahan LR, Schenk G (2016) J Inorg Biochem 162:343–355. https://doi.org/10.1016/j.jinorgbio.2015.12.028
Pathak C, Kumar D, Gangwar MK, Mhatre D, Roisnel T, Ghosh P (2018) J Inorg Biochem 185:30–42. https://doi.org/10.1016/j.jinorgbio.2018.04.018
Pathak C, Gangwar MK, Ghosh P (2018) Polyedron 145:88–100. https://doi.org/10.1016/j.poly.2018.01.029
Pathak C, Gupta SK, Manoj K, Gangwar MK, Prakasham AP, Ghosh P (2017) ACS Omega 2(8):4737–4750. https://doi.org/10.1021/acsomega.7b00671
Jarenmark M, Carlsson H, Trukhan VM, Haukka M, Canton SE, Walczak M, Fullagar W, Sundström V, Nordlander E (2010) Inorg Chem Commun 13:334–337. https://doi.org/10.1016/j.inoche.2009.12.007
Jarenmark M, Haukka M, Demeshko S, Tuczek F, Zuppiroli L, Meyer F, Nordlander E (2011) J Biol Inorg Chem 50:3866–3887. https://doi.org/10.1021/ic1020324
Das B, Daver H, Singh A, Singh R, Haukka M, Demeshko S, Meyer F, Lisensky G, Jarenmark M, Himo F, Nordlander M (2014) Eur J Inorg Chem 2204:2212. https://doi.org/10.1002/ejic.201301375
Jarenmark M, Carlsson H, Nordlander E (2007) C R Chim 10(4–5):433–462. https://doi.org/10.1016/j.crci.2007.02.015
Dutta N, Haldar S, Vijaykumar G, Paul S, Chattopadhyay AP, Carrella L, Bera M (2018) Inorg Chem 57(17):10802–10820. https://doi.org/10.1021/acs.inorgchem.8b01441
Das B, Daver H, Pyrkosz-Bulska M, Gumienna-Kontecka E, Himo F, Nordlander E (2018) Eur J Inorg Chem 36:4004–4013. https://doi.org/10.1002/ejic.201701416
Mohamed MF, Neverov AA, Brown RS (2009) Inorg Chem 48(23):11425–11433. https://doi.org/10.1021/ic9015965
Danford JJ, Dobrowolski P, Berreau LM (2009) Inorg Chem 48(23):11352–11361. https://doi.org/10.1021/ic901890d
Kimura E (2000) Curr Opin Chem Biol 4(2):207–213. https://doi.org/10.1016/s1367-5931(99)00076-9
Coleman F, Hynes MJ, Erxleben A (2010) Inorg Chem 49(14):6725–6733. https://doi.org/10.1021/ic100722w
Bozzo GG, Raghothama KG, Plaxton WC (2004) Biochem J 377(2):419–428. https://doi.org/10.1042/bj20030947
Albedyhl S, Averbuch-Pouchot MT, Belle C, Krebs B, Pierre JL, Saint-Aman E, Torelli S (2001) Eur J Inorg Chem 6:1457–1464
Daumann LJ, Schenk G, Ollis DL, Gahan LR (2014) Dalton Trans 43(3):910–928. https://doi.org/10.1039/c3dt52287c
Erxleben A (2019) Front Chem 7:82. https://doi.org/10.3389/fchem.2019.00082
Daver H, Das B, Nordlander E, Himo F (2016) Inorg Chem 55(4):1872–1882. https://doi.org/10.1021/acs.inorgchem.5b02733
Wang MQ, Liu JL, Wang JY, Zhang DW, Zhang J, Streckenbach F, Tang Z, Lin HH, Liu Y, Zhao YF, Yu XQ (2011) Chem Commun 47:11059–11061. https://doi.org/10.1039/c1cc14185f
Naik K, Nevrekar A, Kokare DG, Kotian A, Kamat V, Revankar VK (2016) J Mol Struct 1125:671–679. https://doi.org/10.1016/j.molstruc.2016.07.036
Luong TK, Shestakova P, Parac-Vogt TN (2016) Dalton Trans 45:12174–12180. https://doi.org/10.1039/c6dt02211a
Mukherjee S, Mitra I, Reddy BVP, Mahata S, Bose KJC, Dasgupta S, Linert W, Moi SCh (2016) Polyhedron 119:84–97. https://doi.org/10.1016/j.poly.2016.08.024
Li S, Dai M, Zhang C, Jiang B, Xu J, Zhou D, Gu Z (2016) Molecules 21:920. https://doi.org/10.3390/molecules21070920
Chennam KP, Ravi M, Ushaiah B, Srinu V, Eslavath RK, Devi ChS (2016) J Fluorescence 26:189–205. https://doi.org/10.1007/s10895-015-1701-3
Tirel EY, Bellamy Z, Adams H, Lebrun V, Duarte F, Williams NH (2014) Angew Chem Int Ed 53:8246–8250. https://doi.org/10.1002/anie.201400335
Muxel AA, Neves A, Camargo MA, Bortoluzzi AJ, Szpoganicz B, Castellano EE, Castilho N, Bortolotto T, Terenzi H (2014) Inorg Chem 53:2943–2952. https://doi.org/10.1021/ic402705r
Desbouis D, Troitsky IP, Belousoff MJ, Spiccia L, Graham B (2012) Coord Chem Rev 256:897–937. https://doi.org/10.1016/j.ccr.2011.12.005
Liu C, Wang L (2009) Dalton Trans 2:227–239. https://doi.org/10.1039/b811616d
Mancin F, Tecilla P (2007) New J Chem 31(6):800–817. https://doi.org/10.1039/b703556j
Cowan JA (2001) Curr Opin Chem Biol 5(6):634–642. https://doi.org/10.1016/s1367-5931(01)00259-9
Hernández-Gil J, Ferrer S, Salvador E, Calvo J, Garcia-España E, Mareque-Rivas JC (2013) Chem Commun 49(35):3655. https://doi.org/10.1039/c3cc39067e
Souza B, Heying R, Bortoluzzi AJ, Domingos JB, Neves A (2015) J Mol Catal A Chem 397:76–84. https://doi.org/10.1016/j.molcata.2014.11.006
Busschaert N, Caltagirone C, Van Rossom W, Gale PA (2015) Chem Rev 115:8038–8155. https://doi.org/10.1021/acs.chemrev.5b00099
Liu Y, Hu C, Comotti A, Ward MD (2011) Science 333:436. https://doi.org/10.1126/science.1204369
Alberto ME, Marino T, Ramos MJ, Russo N (2010) J Chem Theory Comput 6:2424–2433. https://doi.org/10.1021/ct100187c
Lewis JC (2013) ACS Catal 3:2954–2975. https://doi.org/10.1021/cs400806a
Zhao M, Wang HB, Ji LN, Mao ZW (2013) Chem Soc Rev 42:8360–8375. https://doi.org/10.1039/c3cs60162e
Shook RL, Borovik AS (2010) Inorg Chem 49(8):3646–3660. https://doi.org/10.1021/ic901550k
Perreault DM, Cabell LA, Anslyn EV (1997) Bioorganic Med Chem 5:1209–1220. https://doi.org/10.1016/s0968-0896(97)00051-5
Matthew J, Tjioe L, Graham B, Spiccia L (2008) Inorg Chem 47:8641–8651. https://doi.org/10.1021/ic8004079
Salvio R, Casnati A (2017) J Org Chem 82:10461–10469. https://doi.org/10.1021/acs.joc.7b01925
Tjioe L, Joshi T, Forsyth CM, Moubaraki B, Murray KS, Brugger J, Graham B, Spiccia L (2011) Inorg Chem 51(2):939–953. https://doi.org/10.1021/ic2019814
Mandal S, Muller J (2017) Curr Opin Chem Biol 37:71–79. https://doi.org/10.1016/j.cbpa.2017.01.019
Amo-Ochoa P, Castillo O, Harrington RW, Zamora F, Houlton A (2013) Inorg Chem 52:2174–2181. https://doi.org/10.1021/ic302602c
Holmen A, Norden B, Albinsson B (1997) J Am Chem Soc 119:3114–3121. https://doi.org/10.1021/ja9635600
Jean JM, Hall KB (2001) Proc Natl Acad Sci USA 98:37–41. https://doi.org/10.1073/pnas.98.1.37
Gagné R, Koval AC, Lisensky GC (1980) Inorg Chem 19:2854–2855. https://doi.org/10.1021/ic50211a080
Strohalm M, Kavan D, Novák P, Volný M, Havlíček V (2010) Anal Chem 82:4648–4651. https://doi.org/10.1021/ac100818g
Martell AE, Montekaitis RJ (1992) Determination and use of ilton, 2nd edn. VCD, New York
Massoud SS, Perkins RS, Louka FR, Xu W, Roux AL, Dutercq Q, Fischer RC, Mautner FA, Handa M, Hiraoka Y, Kreft GL, Bortolotto T, Terenzi H (2014) Dalton Trans 43:10086–10103. https://doi.org/10.1039/c4dt00615a
Piszkiewicz D (1977) Kinetics of chemical and enzyme-catalyzed reactions. Oxford University Press, New York
Neese F (2018) Comput Mol Sci 8:e1327. https://doi.org/10.1002/wcms.1327
Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/physrevlett.77.3865
Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396. https://doi.org/10.1103/physrevlett.78.1396
Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577. https://doi.org/10.1063/1.463096
Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/b508541a
Izsak R, Neese F (2011) J Chem Phys 135:144105. https://doi.org/10.1063/1.3646921
Kossmann S, Neese F (2010) J Chem Theory Comput 6:2325–2338. https://doi.org/10.1021/ct100199k
Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344
Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759
Petrenko T, Kossmann S, Neese F (2011) J Chem Phys 134:054116. https://doi.org/10.1063/1.3533441
Grimme S (2013) J Chem Phys 138:244104. https://doi.org/10.1063/1.4811331
Runge E, Gross EKU (1984) Phys Rev Lett 52:997. https://doi.org/10.1103/physrevlett.52.997
Gross EKU, Kohn W (1985) Phys Rev Lett 55:923. https://doi.org/10.1103/physrevlett.55.2850
Chemcraft—graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com
Karsten P, Neves A (2002) Inorg Chem Commun 5:434–438. https://doi.org/10.1016/s1387-7003(02)00435-5
Luo D, Fan Y, Xu X (2012) Biorg Med Chem Lett 22:4386–4390. https://doi.org/10.1016/j.bmcl.2012.04.130
Smith SJ, Riley MJ, Noble CJ, Hanson GR, Stranger R, Jayaratne V, Cavigliasso G, Schenk G, Gahan LR (2009) Inorg Chem 48:10036–10048. https://doi.org/10.1021/ic9005086
Cox BG (2013) Acids and bases: solvent effects on acid‐base strength. Oxford University Press, Oxford
Benoit RL, Fréchette M (1985) Can J Chem 63:3053–3056. https://doi.org/10.1139/v85-506
Kantacha A, Buchhoz R, Smith SJ, Schenk G, Gahan LR (2011) J Biol Inorg Chem 16:25–32. https://doi.org/10.1007/s00775-010-0696-0
Zambelli B, Musiani F, Benini S, Ciurli S (2011) Acc Chem Res 44:520–530. https://doi.org/10.1021/ar200041k
Selleck C, Larrabee JL, Harmer J, Guddat LW, Mitić N, Helweh W, Ollis DL, Craig WA, Tierney DL, Pedroso MM, Schenk G (2016) Chem Eur J 22:17704–17714. https://doi.org/10.1002/chem.201602762
Pedroso MM, Larrabee JA, Ely F, Gwee SE, Mitic N, Ollis DL, Gahan LR, Schenk G (2016) Chem Eur J 22:999–1009. https://doi.org/10.1002/chem.201504001
Gouré E, Carboni M, Troussier A, Lebrun C, Pécaut J, Jacquot JF, Dubourdeaux P, Clémancey M, GeneviÀve B, Latour JM (2015) Chem Eur J 21:8064–8068. https://doi.org/10.1002/chem.201500977
Twitchett MB, Schenk G, Aquino MAS, Tak DY, Lau TC, Sykes AG (2002) Inorg Chem 41:5787–5794. https://doi.org/10.1021/ic020037f
Hadler KS, Mitić N, Ely F, Hanson GR, Gahan LR, Larrabee A, Ollis DL, Schenk G (2009) J Am Chem Soc 131:11900–11908. https://doi.org/10.1021/ja903534f
Mitić N, Miraula M, Selleck C, Hadler KS, Uribe E, Pedroso MM, Schenk G (2014) Adv Protein Chem Struct Biol 97:49–81. https://doi.org/10.1016/bs.apcsb.2014.07.002
Johnson KA, Goody RS (2011) Biochemistry 50(39):8264–8269. https://doi.org/10.1021/bi201284u
Deal KA, Hengge AC, Burstyn JN (1996) J Am Chem Soc 118:1713–1718. https://doi.org/10.1021/ja952306p
Bunton CA, Farber SJ (1969) J Org Chem 34:767–772. https://doi.org/10.1021/jo01256a001
Merkx M, Pinkse MWH, Averill BA (1999) Biochemistry 38(31):9914–9925. https://doi.org/10.1021/bi9904454
Wang X, Ho RYN, Whiting AK, Que L (1999) J Am Chem Soc 121(39):9235–9236. https://doi.org/10.1021/ja990732v
Cui P, Wang Y, Chu W, Guo X, Yang F, Yu M, Zhao H, Dong Y, Xie Y, Gong W, Wu Z (2014) Sci Rep. https://doi.org/10.1038/srep07453
Mitić N, Hadler KS, Gahan LR, Hengge AC, Schenk G (2010) J Am Chem Soc 132:7049–7054. https://doi.org/10.1021/ja910583y
Nakanishi Berova, Woody RW (2000) Circular dichroism: principles and applications, 2nd edn. Wiley, New York
Jain SJ, Tullius TD (2008) Nat Protoc 3:1092–1100. https://doi.org/10.1038/nprot.2008.72
Acknowledgements
The authors acknowledge support from CNPq, CAPES/STINT, CAPES Financial code 0001, INCT-Catálise.
Author information
Authors and Affiliations
Contributions
The initial manuscript draft and figures were prepared by Pereira, C. for her PhD research and revised by NA and PRA. All the authors had final approved of the submitted version of the paper.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Pereira, C., Farias, G., Maranha, F.G. et al. Guanidine- and purine-functionalized ligands of FeIIIZnII complexes: effects on the hydrolysis of DNA. J Biol Inorg Chem 24, 675–691 (2019). https://doi.org/10.1007/s00775-019-01680-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00775-019-01680-3