Skip to main content

Advertisement

Log in

Guanidine- and purine-functionalized ligands of FeIIIZnII complexes: effects on the hydrolysis of DNA

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the catalytic effects of aminoguanidine and aminopurine groups in the second sphere of a FeIIIZnII complex that mimics the active site of the metallohydrolase purple acid phosphatase (PAP) are investigated, with a particular view on DNA as substrate. The ligand 3-(((3-((bis(2-(pyridin-2-yl)ethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)meth-yl)-2 hydroxy-5-methylbenzaldehyde—(H2L1bpea) was synthesized and its complex [(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea)](ClO4) was used as a base for comparison with similar complexes previously published in the literature. Subsequent modifications were conducted in the aldehyde group, where aminoguanidine (amig) and aminopurine (apur) were used as side chain derivatives. The complexes [(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea)](ClO4) (1), [(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea–amig)](ClO4) (2) and [(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea–apur)](ClO4) (3) were characterized by spectroscopic methods (infrared, UV–Vis) and ESI-MS spectrometry. Density functional theory (DFT) was also used to better understand the structure of the complexes. The hydrolytic activity of complexes 1, 2 and 3 was analyzed using both the model substrate 2,4-BDNPP (bis-(2,4-dinitrophenyl)phosphate) and DNA. Complexes 2 and 3, containing the derivatized ligands, have a significantly higher association constant (Kassoc≅ 1/KM) for the activated substrate 2,4-BDNPP compared to complex 1. The catalytic efficiency (kcat/KM) is also higher due to hydrogen bonds and/or π-stacking interactions between the substrate and the aminoguanidine or aminopurine groups present in 2 and 3, respectively. In the DNA cleavage assays, all complexes were able to cleave DNA, with 1 and 2 having higher catalytic activity than 3. In addition, when compared to previously analyzed complexes, complex 2 is one of the most active, having a kcat of 0.21 h−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

amig:

Aminoguanidine

apur:

6-Aminopurine

Ef :

Catalytic efficiency (kcat/KM)

2,4-BDNPP:

Bis(2,4-dinitrophenyl)phosphate

2,4-DNP:

2,4-Dinitrophenolate

CD:

Circular dichroism

Complex 1 :

[(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea)](ClO4)

Complex 2 :

[(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea–amig)](ClO4)

Complex 3 :

[(OH)FeIII(μ-OH)ZnII(H2O)(L1bpea–apur)](ClO4)

CT:

Charge transfer

CT-DNA:

Calf thymus DNA

CHES:

N-Cyclohexyl-2-aminoethanesulfonic acid

Cmff:

2-Chloromethyl-4-methyl-6-formylphenol

FeIIEDTA/DTT:

Ethylenediamine tetra acetic acid/dithiothreitol

H2L1bpea:

3-(((3-((Bis(2-(pyridin-2-yl)ethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)meth-yl)-2 hydroxy-5-methylbenzaldehyde

H2L1bpea–amig:

2-(3-(((3-((Bis(2-(pyridin-2-yl)ethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzylidene)hydrazinecarboximidamide

H2L1bpea–apur:

2-((2-(9H-Purin-6-ylamino)ethylamino)methyl)-6-(((3-((bis(2-(pyridin-2-yl)ethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-methyl-phenol

HEPES:

2-[4-(2-Hydroxyethyl)-piperazin-1-yl]ethanesulfonic acid

Kassoc :

Association constant (≈ 1/KM)

MES (from 4.5 to 6.5):

2-(N-Morpholino)ethanesulfonic acid

PAP:

Purple acid phosphatase

TD-DFT/TDA:

Tamm–Dancoff approximation

TS:

Transition state

References

  1. Wilcox DE (1996) Chem Rev 96:2435–2458. https://doi.org/10.1021/cr950043b

    Article  CAS  PubMed  Google Scholar 

  2. Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G (2006) Chem Rev 106:3338–3363. https://doi.org/10.1021/cr050318f

    Article  CAS  PubMed  Google Scholar 

  3. Schenk G, Mitić N, Hanson GR, Comba P (2013) Coord Chem Rev 257:473–482. https://doi.org/10.1016/j.ccr.2012.03.020

    Article  CAS  Google Scholar 

  4. Twitchett MB, Sykes AG (1999) Eur J Inorg Chem 37:2105–2115

    Article  Google Scholar 

  5. Klabunde T, Krebs B (1997) Struct Bond 89:177–198. https://doi.org/10.1007/3-540-62874-6_12

    Article  CAS  Google Scholar 

  6. Schenk G, Ge Y, Carrington LE, Wynne CJ, Searle IR, Carroll BJ, Hamilton S, de Jersey J (1999) Arch Biochem Biophys 370:183–189. https://doi.org/10.1006/abbi.1999.1407

    Article  CAS  PubMed  Google Scholar 

  7. Durmus A, Eicken C, Sift BH, Kratel A, Kappi R, Hütterman J, Krebs B (1999) Eur J Biochem 260:709–716. https://doi.org/10.1046/j.1432-1327.1999.00230.x

    Article  CAS  PubMed  Google Scholar 

  8. Mitić N, Noble CJ, Gahan LR, Hanson GR, Schenk G (2009) J Am Chem Soc 131:8173–8179. https://doi.org/10.1021/ja900797u

    Article  CAS  PubMed  Google Scholar 

  9. Antonyuk SV, Olczak M, Olczak T, Ciuraszkiewicz J, Strange RW (2014) IUCrJ. 1(2):101–109. https://doi.org/10.1107/s205225251400400x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaija H, Alatalo SL, Halleen JM, Lindqvist Y, Schneider G, Väänänen HK, Vihko P (2002) Biochem Biophys Res Commun 292:128–132. https://doi.org/10.1006/bbrc.2002.6615

    Article  CAS  PubMed  Google Scholar 

  11. Bernhardt PV, Schenk G, Wilson GJ (2004) Biochemistry 43:10387–10392. https://doi.org/10.1021/bi0490338

    Article  CAS  PubMed  Google Scholar 

  12. Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA (2000) Bone 27:575–584. https://doi.org/10.1016/s8756-3282(00)00368-9

    Article  CAS  PubMed  Google Scholar 

  13. Moss DW, Raymond FD, Wile DB (1995) Crit Rev Clin Lab Sci 32:431–467. https://doi.org/10.3109/10408369509084690

    Article  CAS  PubMed  Google Scholar 

  14. Valizadeh M, Schenk G, Nash K, Oddie GW, Guddat LW, Hume DA, de Jersey J, Burke TR Jr, Hamilton S (2004) Arch Biochem Biophys 424:154–162. https://doi.org/10.1016/j.abb.2004.01.008

    Article  CAS  PubMed  Google Scholar 

  15. Feder D, Hussein WM, Clayton DJ, Kan M, Schenk G, McGeary RP, Guddat LW (2012) Chem Biol Drug Des 80:665–674. https://doi.org/10.1111/cbdd.12001

    Article  CAS  PubMed  Google Scholar 

  16. Hussein WM, Feder D, Schenk G, Guddat LW, McGeary RP (2018) Eur J Med Chem 157:462–479. https://doi.org/10.1016/j.ejmech.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  17. Beck JL, McConachie LA, Summors AC, Arnold WN, Jersey JD, Zerner B (1986) Biochim Biophys Acta 869:61–68. https://doi.org/10.1016/0167-4838(86)90310-9

    Article  CAS  Google Scholar 

  18. Tian J, Liao H (2018) Annu Rev Plant Biol. https://doi.org/10.1002/9781119312994.apr0525

    Article  Google Scholar 

  19. Schenk G, Guddat LW, Carrington LE, Hume DA, Hamilton S, Jersey J (2000) Gene 250:117–125. https://doi.org/10.1016/s0378-1119(00)00186-4

    Article  CAS  PubMed  Google Scholar 

  20. Flanagan JU, Cassady AI, Schenk G, Guddat LW, Hume DA (2006) Gene 377:12–20. https://doi.org/10.1016/j.gene.2006.02.031

    Article  CAS  PubMed  Google Scholar 

  21. Robinson WD, Park J, Tran HT, Del Vecchio HA, Ying S, Zins JL, Patel K, McKnight TD, Plaxton WC (2012) J Exp Bot 63:6531–6542. https://doi.org/10.1093/jxb/ers309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang L, Lu S, Zhang Y, Li Z, Du X, Liu D (2014) J Integr Plant Biol 56:299–314. https://doi.org/10.1111/jipb.12184

    Article  CAS  PubMed  Google Scholar 

  23. Camargo TP, Maia FF, Chaves C, Souza B, Bortoluzzi AJ, Castilho N, Bortolotto T, Terenzi H, Castellano EE, Haase W, Tomkowicz Z, Peralta RA, Neves A (2015) J Inorg Biochem 146:77–88. https://doi.org/10.1016/j.jinorgbio.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  24. Comba P, Gahan LR, Mereacre V, Hanson GR, Powell AK, Schenk G, Zajaczkowski-Fischer M (2012) Inorg Chem 51:12195–12209. https://doi.org/10.1021/ic301347t

    Article  CAS  PubMed  Google Scholar 

  25. Souza B, Kreft GL, Bortolotto T, Terenzi H, Bortoluzzi AJ, Castellano EE, Peralta RA, Domingos JB, Neves A (2013) Inorg Chem 52:3594–3596. https://doi.org/10.1021/ic400025j

    Article  CAS  PubMed  Google Scholar 

  26. Silva GAS, Amorim AL, Souza B, Gabriel P, Terenzi H, Nordlander E, Neves A, Peralta RA (2017) Dalton Trans 46:11380–11394. https://doi.org/10.1039/c7dt02035j

    Article  CAS  PubMed  Google Scholar 

  27. Camargo TP, Neves A, Peralta RA, Chaves C, Maia ECP, Lizarazo-Jaimes EH, Gomes DA, Bortolotto T, Norberto DR, Terenzi H, Tierney DL, Schenk G (2018) Inorg Chem 57:187–203. https://doi.org/10.1021/acs.inorgchem.7b02384

    Article  CAS  PubMed  Google Scholar 

  28. Comba P, Gahan LR, Hanson GR, Mereacre V, Noble CJ, Powell AK, Prisecaru I, Schenk G, Zajaczkowski-Fischer M (2012) Chem Eur J 18:1700–1710. https://doi.org/10.1002/chem.201100229

    Article  CAS  PubMed  Google Scholar 

  29. Peralta RA, Bortoluzzi AJ, Souza B, Jovito R, Xavier FR, Couto RA, Casellato A, Nome F, Dick A, Gahan LR, Schenk G, Hanson GR, Paula FC, Pereira-Maia EC, Machado SP, Severino PC, Pich C, Bortolotto T, Terenzi H, Castellano EE, Neves A, Riley MJ (2010) Inorg Chem 49:11421–11438. https://doi.org/10.1021/ic101433t

    Article  CAS  PubMed  Google Scholar 

  30. Piovezan C, Jovito R, Bortoluzzi AJ, Terenzi H, Fischer FL, Severino PC, Pich CT, Azzolini GG, Peralta RA, Rossi LM, Neves A (2010) Inorg Chem 49:2580–2582. https://doi.org/10.1021/ic902489j

    Article  CAS  PubMed  Google Scholar 

  31. Lanznaster M, Neves A, Bortoluzzi AJ, Szpoganicz B, Schwingel E (2002) Inorg Chem 41:5641–5643. https://doi.org/10.1021/ic025892d

    Article  CAS  PubMed  Google Scholar 

  32. Neves A, Lanznaster M, Bortoluzzi AJ, Peralta RA, Casellato A, Castellano EE, Herrald P, Riley MJ, Schenk G (2007) J Am Chem Soc 129:7486–7487. https://doi.org/10.1021/ja071184l

    Article  CAS  PubMed  Google Scholar 

  33. Lanznaster M, Neves A, Bortoluzzi AJ, Aires VVE, Szpoganicz B, Terenzi H, Severino PC, Fuller JM, Drew SC, Gahan LR, Hanson GR, Riley MJ, Schenk G (2005) J Biol Inorg Chem 10:319–332. https://doi.org/10.1007/s00775-005-0635-7

    Article  CAS  PubMed  Google Scholar 

  34. Smith SJ, Casellato A, Hadler KS, Mitić N, Riley MJ, Bortoluzzi AJ, Szpoganicz B, Schenk G, Neves A, Gahan LR (2007) J Biol Inorg Chem 12:1207–1220. https://doi.org/10.1007/s00775-007-0286-y

    Article  CAS  PubMed  Google Scholar 

  35. Schenk G, Peralta RA, Batista SC, Bortoluzzi AJ, Szpoganicz B, Dick AK, Herrald P, Hanson GR, Szilagyi RK, Riley MJ, Gahan LR, Neves A (2008) J Biol Inorg Chem 13:139–155. https://doi.org/10.1007/s00775-007-0305-z

    Article  CAS  PubMed  Google Scholar 

  36. Xavier FR, Neves A, Casellato A, Peralta RA, Bortoluzzi AJ, Szpoganicz B, Severino PC, Terenzi H, Tomkowicz Z, Ostrovsky S, Haase W, Ozarowski A, Krzystek J, Telser J, Schenk G, Gahan LR (2009) Inorg Chem 48:7905–7921. https://doi.org/10.1021/ic900831q

    Article  CAS  PubMed  Google Scholar 

  37. Smith SJ, Casellato A, Hadler KS, Mitić N, Riley MJ, Bortoluzzi AJ, Szpoganicz B, Peralta RA, Jovito R, Jr Horn, Bortoluzzi AJ, Noble CJ, Hanson GR, Stranger R, Jayaratne V, Cavigliasso G, Gahan LR, Schenk G, Nascimento OR, Cavalett A, Bortolotto T, Razzera G, Terenzi H, Neves A, Riley MJ (2012) Inorg Chem 51:2065–2078. https://doi.org/10.1021/ic201711p

    Article  CAS  PubMed  Google Scholar 

  38. Bosch D, Comba P, Gahan LR, Schenk G (2014) Inorg Chem 53:9036–9051. https://doi.org/10.1021/ic5009945

    Article  CAS  PubMed  Google Scholar 

  39. Roberts AE, Schenk G, Gahan LR (2015) Eur J Inorg Chem 2015:3076–3086. https://doi.org/10.1002/ejic.201500351

    Article  CAS  Google Scholar 

  40. Bernhardt PV, Bosch S, Comba P, Gahan LR, Hanson GR, Mereacre V, Noble CJ, Powell AK, Schenk G, Wadepohl H (2015) Inorg Chem 54:7249–7263. https://doi.org/10.1021/acs.inorgchem.5b00628

    Article  CAS  PubMed  Google Scholar 

  41. Bosch S, Comba P, Hanson G, Noble C, Schenk G, Wadepohl H (2015) Chem Eur J 21:18269–18279. https://doi.org/10.1002/chem.201503348

    Article  CAS  PubMed  Google Scholar 

  42. Bosch S, Comba P, Gahan LR, Schenk G (2016) J Inorg Biochem 162:343–355. https://doi.org/10.1016/j.jinorgbio.2015.12.028

    Article  CAS  PubMed  Google Scholar 

  43. Pathak C, Kumar D, Gangwar MK, Mhatre D, Roisnel T, Ghosh P (2018) J Inorg Biochem 185:30–42. https://doi.org/10.1016/j.jinorgbio.2018.04.018

    Article  CAS  PubMed  Google Scholar 

  44. Pathak C, Gangwar MK, Ghosh P (2018) Polyedron 145:88–100. https://doi.org/10.1016/j.poly.2018.01.029

    Article  CAS  Google Scholar 

  45. Pathak C, Gupta SK, Manoj K, Gangwar MK, Prakasham AP, Ghosh P (2017) ACS Omega 2(8):4737–4750. https://doi.org/10.1021/acsomega.7b00671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jarenmark M, Carlsson H, Trukhan VM, Haukka M, Canton SE, Walczak M, Fullagar W, Sundström V, Nordlander E (2010) Inorg Chem Commun 13:334–337. https://doi.org/10.1016/j.inoche.2009.12.007

    Article  CAS  Google Scholar 

  47. Jarenmark M, Haukka M, Demeshko S, Tuczek F, Zuppiroli L, Meyer F, Nordlander E (2011) J Biol Inorg Chem 50:3866–3887. https://doi.org/10.1021/ic1020324

    Article  CAS  Google Scholar 

  48. Das B, Daver H, Singh A, Singh R, Haukka M, Demeshko S, Meyer F, Lisensky G, Jarenmark M, Himo F, Nordlander M (2014) Eur J Inorg Chem 2204:2212. https://doi.org/10.1002/ejic.201301375

    Article  CAS  Google Scholar 

  49. Jarenmark M, Carlsson H, Nordlander E (2007) C R Chim 10(4–5):433–462. https://doi.org/10.1016/j.crci.2007.02.015

    Article  CAS  Google Scholar 

  50. Dutta N, Haldar S, Vijaykumar G, Paul S, Chattopadhyay AP, Carrella L, Bera M (2018) Inorg Chem 57(17):10802–10820. https://doi.org/10.1021/acs.inorgchem.8b01441

    Article  CAS  PubMed  Google Scholar 

  51. Das B, Daver H, Pyrkosz-Bulska M, Gumienna-Kontecka E, Himo F, Nordlander E (2018) Eur J Inorg Chem 36:4004–4013. https://doi.org/10.1002/ejic.201701416

    Article  CAS  Google Scholar 

  52. Mohamed MF, Neverov AA, Brown RS (2009) Inorg Chem 48(23):11425–11433. https://doi.org/10.1021/ic9015965

    Article  CAS  PubMed  Google Scholar 

  53. Danford JJ, Dobrowolski P, Berreau LM (2009) Inorg Chem 48(23):11352–11361. https://doi.org/10.1021/ic901890d

    Article  CAS  PubMed  Google Scholar 

  54. Kimura E (2000) Curr Opin Chem Biol 4(2):207–213. https://doi.org/10.1016/s1367-5931(99)00076-9

    Article  CAS  PubMed  Google Scholar 

  55. Coleman F, Hynes MJ, Erxleben A (2010) Inorg Chem 49(14):6725–6733. https://doi.org/10.1021/ic100722w

    Article  CAS  PubMed  Google Scholar 

  56. Bozzo GG, Raghothama KG, Plaxton WC (2004) Biochem J 377(2):419–428. https://doi.org/10.1042/bj20030947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Albedyhl S, Averbuch-Pouchot MT, Belle C, Krebs B, Pierre JL, Saint-Aman E, Torelli S (2001) Eur J Inorg Chem 6:1457–1464

    Article  Google Scholar 

  58. Daumann LJ, Schenk G, Ollis DL, Gahan LR (2014) Dalton Trans 43(3):910–928. https://doi.org/10.1039/c3dt52287c

    Article  CAS  PubMed  Google Scholar 

  59. Erxleben A (2019) Front Chem 7:82. https://doi.org/10.3389/fchem.2019.00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Daver H, Das B, Nordlander E, Himo F (2016) Inorg Chem 55(4):1872–1882. https://doi.org/10.1021/acs.inorgchem.5b02733

    Article  CAS  PubMed  Google Scholar 

  61. Wang MQ, Liu JL, Wang JY, Zhang DW, Zhang J, Streckenbach F, Tang Z, Lin HH, Liu Y, Zhao YF, Yu XQ (2011) Chem Commun 47:11059–11061. https://doi.org/10.1039/c1cc14185f

    Article  CAS  Google Scholar 

  62. Naik K, Nevrekar A, Kokare DG, Kotian A, Kamat V, Revankar VK (2016) J Mol Struct 1125:671–679. https://doi.org/10.1016/j.molstruc.2016.07.036

    Article  CAS  Google Scholar 

  63. Luong TK, Shestakova P, Parac-Vogt TN (2016) Dalton Trans 45:12174–12180. https://doi.org/10.1039/c6dt02211a

    Article  CAS  PubMed  Google Scholar 

  64. Mukherjee S, Mitra I, Reddy BVP, Mahata S, Bose KJC, Dasgupta S, Linert W, Moi SCh (2016) Polyhedron 119:84–97. https://doi.org/10.1016/j.poly.2016.08.024

    Article  CAS  Google Scholar 

  65. Li S, Dai M, Zhang C, Jiang B, Xu J, Zhou D, Gu Z (2016) Molecules 21:920. https://doi.org/10.3390/molecules21070920

    Article  CAS  PubMed Central  Google Scholar 

  66. Chennam KP, Ravi M, Ushaiah B, Srinu V, Eslavath RK, Devi ChS (2016) J Fluorescence 26:189–205. https://doi.org/10.1007/s10895-015-1701-3

    Article  CAS  Google Scholar 

  67. Tirel EY, Bellamy Z, Adams H, Lebrun V, Duarte F, Williams NH (2014) Angew Chem Int Ed 53:8246–8250. https://doi.org/10.1002/anie.201400335

    Article  CAS  Google Scholar 

  68. Muxel AA, Neves A, Camargo MA, Bortoluzzi AJ, Szpoganicz B, Castellano EE, Castilho N, Bortolotto T, Terenzi H (2014) Inorg Chem 53:2943–2952. https://doi.org/10.1021/ic402705r

    Article  CAS  PubMed  Google Scholar 

  69. Desbouis D, Troitsky IP, Belousoff MJ, Spiccia L, Graham B (2012) Coord Chem Rev 256:897–937. https://doi.org/10.1016/j.ccr.2011.12.005

    Article  CAS  Google Scholar 

  70. Liu C, Wang L (2009) Dalton Trans 2:227–239. https://doi.org/10.1039/b811616d

    Article  CAS  Google Scholar 

  71. Mancin F, Tecilla P (2007) New J Chem 31(6):800–817. https://doi.org/10.1039/b703556j

    Article  CAS  Google Scholar 

  72. Cowan JA (2001) Curr Opin Chem Biol 5(6):634–642. https://doi.org/10.1016/s1367-5931(01)00259-9

    Article  CAS  PubMed  Google Scholar 

  73. Hernández-Gil J, Ferrer S, Salvador E, Calvo J, Garcia-España E, Mareque-Rivas JC (2013) Chem Commun 49(35):3655. https://doi.org/10.1039/c3cc39067e

    Article  CAS  Google Scholar 

  74. Souza B, Heying R, Bortoluzzi AJ, Domingos JB, Neves A (2015) J Mol Catal A Chem 397:76–84. https://doi.org/10.1016/j.molcata.2014.11.006

    Article  CAS  Google Scholar 

  75. Busschaert N, Caltagirone C, Van Rossom W, Gale PA (2015) Chem Rev 115:8038–8155. https://doi.org/10.1021/acs.chemrev.5b00099

    Article  CAS  PubMed  Google Scholar 

  76. Liu Y, Hu C, Comotti A, Ward MD (2011) Science 333:436. https://doi.org/10.1126/science.1204369

    Article  CAS  PubMed  Google Scholar 

  77. Alberto ME, Marino T, Ramos MJ, Russo N (2010) J Chem Theory Comput 6:2424–2433. https://doi.org/10.1021/ct100187c

    Article  CAS  PubMed  Google Scholar 

  78. Lewis JC (2013) ACS Catal 3:2954–2975. https://doi.org/10.1021/cs400806a

    Article  CAS  Google Scholar 

  79. Zhao M, Wang HB, Ji LN, Mao ZW (2013) Chem Soc Rev 42:8360–8375. https://doi.org/10.1039/c3cs60162e

    Article  CAS  PubMed  Google Scholar 

  80. Shook RL, Borovik AS (2010) Inorg Chem 49(8):3646–3660. https://doi.org/10.1021/ic901550k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Perreault DM, Cabell LA, Anslyn EV (1997) Bioorganic Med Chem 5:1209–1220. https://doi.org/10.1016/s0968-0896(97)00051-5

    Article  CAS  Google Scholar 

  82. Matthew J, Tjioe L, Graham B, Spiccia L (2008) Inorg Chem 47:8641–8651. https://doi.org/10.1021/ic8004079

    Article  CAS  Google Scholar 

  83. Salvio R, Casnati A (2017) J Org Chem 82:10461–10469. https://doi.org/10.1021/acs.joc.7b01925

    Article  CAS  PubMed  Google Scholar 

  84. Tjioe L, Joshi T, Forsyth CM, Moubaraki B, Murray KS, Brugger J, Graham B, Spiccia L (2011) Inorg Chem 51(2):939–953. https://doi.org/10.1021/ic2019814

    Article  CAS  PubMed  Google Scholar 

  85. Mandal S, Muller J (2017) Curr Opin Chem Biol 37:71–79. https://doi.org/10.1016/j.cbpa.2017.01.019

    Article  CAS  PubMed  Google Scholar 

  86. Amo-Ochoa P, Castillo O, Harrington RW, Zamora F, Houlton A (2013) Inorg Chem 52:2174–2181. https://doi.org/10.1021/ic302602c

    Article  CAS  PubMed  Google Scholar 

  87. Holmen A, Norden B, Albinsson B (1997) J Am Chem Soc 119:3114–3121. https://doi.org/10.1021/ja9635600

    Article  CAS  Google Scholar 

  88. Jean JM, Hall KB (2001) Proc Natl Acad Sci USA 98:37–41. https://doi.org/10.1073/pnas.98.1.37

    Article  CAS  PubMed  Google Scholar 

  89. Gagné R, Koval AC, Lisensky GC (1980) Inorg Chem 19:2854–2855. https://doi.org/10.1021/ic50211a080

    Article  Google Scholar 

  90. Strohalm M, Kavan D, Novák P, Volný M, Havlíček V (2010) Anal Chem 82:4648–4651. https://doi.org/10.1021/ac100818g

    Article  CAS  PubMed  Google Scholar 

  91. Martell AE, Montekaitis RJ (1992) Determination and use of ilton, 2nd edn. VCD, New York

    Google Scholar 

  92. Massoud SS, Perkins RS, Louka FR, Xu W, Roux AL, Dutercq Q, Fischer RC, Mautner FA, Handa M, Hiraoka Y, Kreft GL, Bortolotto T, Terenzi H (2014) Dalton Trans 43:10086–10103. https://doi.org/10.1039/c4dt00615a

    Article  CAS  PubMed  Google Scholar 

  93. Piszkiewicz D (1977) Kinetics of chemical and enzyme-catalyzed reactions. Oxford University Press, New York

    Google Scholar 

  94. Neese F (2018) Comput Mol Sci 8:e1327. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  95. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  PubMed  Google Scholar 

  96. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396. https://doi.org/10.1103/physrevlett.78.1396

    Article  CAS  Google Scholar 

  97. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577. https://doi.org/10.1063/1.463096

    Article  Google Scholar 

  98. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/b508541a

    Article  CAS  PubMed  Google Scholar 

  99. Izsak R, Neese F (2011) J Chem Phys 135:144105. https://doi.org/10.1063/1.3646921

    Article  CAS  PubMed  Google Scholar 

  100. Kossmann S, Neese F (2010) J Chem Theory Comput 6:2325–2338. https://doi.org/10.1021/ct100199k

    Article  CAS  PubMed  Google Scholar 

  101. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  102. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  103. Petrenko T, Kossmann S, Neese F (2011) J Chem Phys 134:054116. https://doi.org/10.1063/1.3533441

    Article  CAS  PubMed  Google Scholar 

  104. Grimme S (2013) J Chem Phys 138:244104. https://doi.org/10.1063/1.4811331

    Article  CAS  PubMed  Google Scholar 

  105. Runge E, Gross EKU (1984) Phys Rev Lett 52:997. https://doi.org/10.1103/physrevlett.52.997

    Article  CAS  Google Scholar 

  106. Gross EKU, Kohn W (1985) Phys Rev Lett 55:923. https://doi.org/10.1103/physrevlett.55.2850

    Article  Google Scholar 

  107. Chemcraft—graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com

  108. Karsten P, Neves A (2002) Inorg Chem Commun 5:434–438. https://doi.org/10.1016/s1387-7003(02)00435-5

    Article  CAS  Google Scholar 

  109. Luo D, Fan Y, Xu X (2012) Biorg Med Chem Lett 22:4386–4390. https://doi.org/10.1016/j.bmcl.2012.04.130

    Article  CAS  Google Scholar 

  110. Smith SJ, Riley MJ, Noble CJ, Hanson GR, Stranger R, Jayaratne V, Cavigliasso G, Schenk G, Gahan LR (2009) Inorg Chem 48:10036–10048. https://doi.org/10.1021/ic9005086

    Article  CAS  PubMed  Google Scholar 

  111. Cox BG (2013) Acids and bases: solvent effects on acid‐base strength. Oxford University Press, Oxford

    Book  Google Scholar 

  112. Benoit RL, Fréchette M (1985) Can J Chem 63:3053–3056. https://doi.org/10.1139/v85-506

    Article  CAS  Google Scholar 

  113. Kantacha A, Buchhoz R, Smith SJ, Schenk G, Gahan LR (2011) J Biol Inorg Chem 16:25–32. https://doi.org/10.1007/s00775-010-0696-0

    Article  CAS  PubMed  Google Scholar 

  114. Zambelli B, Musiani F, Benini S, Ciurli S (2011) Acc Chem Res 44:520–530. https://doi.org/10.1021/ar200041k

    Article  CAS  PubMed  Google Scholar 

  115. Selleck C, Larrabee JL, Harmer J, Guddat LW, Mitić N, Helweh W, Ollis DL, Craig WA, Tierney DL, Pedroso MM, Schenk G (2016) Chem Eur J 22:17704–17714. https://doi.org/10.1002/chem.201602762

    Article  CAS  PubMed  Google Scholar 

  116. Pedroso MM, Larrabee JA, Ely F, Gwee SE, Mitic N, Ollis DL, Gahan LR, Schenk G (2016) Chem Eur J 22:999–1009. https://doi.org/10.1002/chem.201504001

    Article  CAS  PubMed  Google Scholar 

  117. Gouré E, Carboni M, Troussier A, Lebrun C, Pécaut J, Jacquot JF, Dubourdeaux P, Clémancey M, GeneviÀve B, Latour JM (2015) Chem Eur J 21:8064–8068. https://doi.org/10.1002/chem.201500977

    Article  CAS  PubMed  Google Scholar 

  118. Twitchett MB, Schenk G, Aquino MAS, Tak DY, Lau TC, Sykes AG (2002) Inorg Chem 41:5787–5794. https://doi.org/10.1021/ic020037f

    Article  CAS  PubMed  Google Scholar 

  119. Hadler KS, Mitić N, Ely F, Hanson GR, Gahan LR, Larrabee A, Ollis DL, Schenk G (2009) J Am Chem Soc 131:11900–11908. https://doi.org/10.1021/ja903534f

    Article  CAS  PubMed  Google Scholar 

  120. Mitić N, Miraula M, Selleck C, Hadler KS, Uribe E, Pedroso MM, Schenk G (2014) Adv Protein Chem Struct Biol 97:49–81. https://doi.org/10.1016/bs.apcsb.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  121. Johnson KA, Goody RS (2011) Biochemistry 50(39):8264–8269. https://doi.org/10.1021/bi201284u

    Article  CAS  PubMed  Google Scholar 

  122. Deal KA, Hengge AC, Burstyn JN (1996) J Am Chem Soc 118:1713–1718. https://doi.org/10.1021/ja952306p

    Article  CAS  Google Scholar 

  123. Bunton CA, Farber SJ (1969) J Org Chem 34:767–772. https://doi.org/10.1021/jo01256a001

    Article  CAS  Google Scholar 

  124. Merkx M, Pinkse MWH, Averill BA (1999) Biochemistry 38(31):9914–9925. https://doi.org/10.1021/bi9904454

    Article  CAS  PubMed  Google Scholar 

  125. Wang X, Ho RYN, Whiting AK, Que L (1999) J Am Chem Soc 121(39):9235–9236. https://doi.org/10.1021/ja990732v

    Article  CAS  Google Scholar 

  126. Cui P, Wang Y, Chu W, Guo X, Yang F, Yu M, Zhao H, Dong Y, Xie Y, Gong W, Wu Z (2014) Sci Rep. https://doi.org/10.1038/srep07453

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mitić N, Hadler KS, Gahan LR, Hengge AC, Schenk G (2010) J Am Chem Soc 132:7049–7054. https://doi.org/10.1021/ja910583y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nakanishi Berova, Woody RW (2000) Circular dichroism: principles and applications, 2nd edn. Wiley, New York

    Google Scholar 

  129. Jain SJ, Tullius TD (2008) Nat Protoc 3:1092–1100. https://doi.org/10.1038/nprot.2008.72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from CNPq, CAPES/STINT, CAPES Financial code 0001, INCT-Catálise.

Author information

Authors and Affiliations

Authors

Contributions

The initial manuscript draft and figures were prepared by Pereira, C. for her PhD research and revised by NA and PRA. All the authors had final approved of the submitted version of the paper.

Corresponding author

Correspondence to Rosely A. Peralta.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, C., Farias, G., Maranha, F.G. et al. Guanidine- and purine-functionalized ligands of FeIIIZnII complexes: effects on the hydrolysis of DNA. J Biol Inorg Chem 24, 675–691 (2019). https://doi.org/10.1007/s00775-019-01680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01680-3

Keywords

Navigation