Regulations of organism by materials: a new understanding of biological inorganic chemistry

  • Jiake Lin
  • Xiaoyu WangEmail author
  • Ruikang TangEmail author
Part of the following topical collections:
  1. 9th Asian Biological Inorganic Chemistry (AsBIC-9) Conference Special Issue


Chemical biology generally highlights the modulation or control of life processes using chemical molecules. However, the rapid development of materials’ science has resulted in the increasing application of various functional materials in biological regulation. More importantly, the state of art of creating the integration of materials, either the inorganic or organic matrices, with living organisms has opened a window of opportunity to add the multiplex function to organisms. In this review, we suggest a new concept of materials’ biology that refers to promoting functional evolution of living organisms using material-based modification of structures, functions, and behaviors of biological organisms, which could change the modification of organisms from the current molecular-level regulation to materials’ level. Thus, this review focuses on the recent achievements of material-based modification of organisms that evolves the biological function of cells, bacteria, and viruses using biomimetic strategies. The bioinspired strategies for material-based modification, including layer-by-layer, biomimetic mineralization, interfacial reactive deposition, etc., are briefly introduced. Furthermore, the interaction between materials and organisms has performed a broad function that is not retained by organisms at their native state, which results in the applications in structural support, protection, environment control, energy, vaccine improvement, and cancer treatment. The significance of material-based regulations of organism is to use rationally designed materials to endow new physiological functions to organisms, which provides another perspective to understand biological inorganic chemistry.

Graphic Abstract

The roles of materials in chemical regulations of biology are highlighted. New characteristics as well as functions can be achieved by integration the rationally designed materials onto/into living organisms, following material-assisted biological improvement/evolution.


Biomineralization Materials’ biology Cells Viruses Regulation 



This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LY17B010001), the Fundamental Research Funds for the Central Universities of China, and the National Natural Science Foundation of China (21625105 and 21571155).


  1. 1.
    Chang CH, Liu WT, Hung HC, Gean CY, Tsai HM, Su CL, Gean PW (2017) BMC Cancer 17:905–914Google Scholar
  2. 2.
    Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M (2018) J Nanostruct Chem 8:123–137Google Scholar
  3. 3.
    Hosseini S, Azari P, Farahmand E, Gan SN, Rothan HA, Yusof R, Koole LH, Djordjevic I, Ibrahim F (2015) Biosens Bioelectron 69:257–264Google Scholar
  4. 4.
    Wu Y, Yang Z, Law JB, He AY, Abbas AA, Denslin V, Kamarul T, Hui JH, Lee EH (2017) Tissue Eng Part A 23:43–54Google Scholar
  5. 5.
    Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Nature 399:761–763Google Scholar
  6. 6.
    Morgan TT, Muddana HS, Muddana HS, Altinoǧlu EI, Rouse SM, Tabaković A, Tabouillot T, Russin TJ, Shanmugavelandy SS, Butler PJ, Eklund PC, Yun JK, Kester M, Adair JH (2008) Nano Lett 8:4108–4115Google Scholar
  7. 7.
    Fratzl P, Kolednik O, Fischerc FD, Dean MN (2016) Chem Soc Rev 45:252–267Google Scholar
  8. 8.
    Cusack M, Freer A (2008) Chem Rev 108:4433–4454Google Scholar
  9. 9.
    Nys Y, Gautron J, Garcia-Ruiz JM, Hinckec MT (2004) CR Palevol 3:549–562Google Scholar
  10. 10.
    Hildebrand M (2008) Chem Rev 108:4855–4874Google Scholar
  11. 11.
    Sahney S, Wilson MV (2001) J Vert Paleontol 21:660–669Google Scholar
  12. 12.
    Faivre D, Schuler D (2008) Chem Rev 108:4875–4898Google Scholar
  13. 13.
    George A, Veis A (2008) Chem Rev 108:4670–4693Google Scholar
  14. 14.
    Yao SS, Jin B, Liu ZM, Shao CY, Zhao RB, Wang XY, Tang RK (2017) Adv Mater 29:1605903Google Scholar
  15. 15.
    Liu ZM, Xu XR, Tang RK (2016) Adv Funct Mater 26:1862–1880Google Scholar
  16. 16.
    Park JH, Yang SH, Lee J, Ko EH, Hong D, Choi IS (2014) Adv Mater 26:2001–2010Google Scholar
  17. 17.
    Wang B, Liu P, Jiang WG, Pan HH, Xu XR, Tang RK (2008) Angew Chem Int Ed 47:3560–3564Google Scholar
  18. 18.
    Yang SH, Lee T, Seo E, Ko EH, Choi IS, Kim BS (2012) Macromol Biosci 12:61–66Google Scholar
  19. 19.
    Decher G, Hong JD, Schmitt J (1992) Thin Solid Films 210:831–835Google Scholar
  20. 20.
    Sumper M, Kröger N (2004) J Mater Chem 14:2059–2065Google Scholar
  21. 21.
    Bellomo EG, Deming TJ (2006) J Am Chem Soc 128:2276–2279Google Scholar
  22. 22.
    Xiong W, Yang Z, Zhai HL, Wang GC, Xu XR, Ma WM, Tang RK (2013) Chem Commun 49:7525–7527Google Scholar
  23. 23.
    Wang B, Liu P, Tang YY, Pan HH, Xu XR, Tang RK (2010) PLoS One 5:e9963Google Scholar
  24. 24.
    Wang XY, Deng YQ, Shi HY, Mei Z, Zhao H, Xiong W, Liu P, Zhao Y, Qin CF, Tang RK (2010) Small 6:351–354Google Scholar
  25. 25.
    Maheshwari V, Fomenko DE, Singh G, Saraf RF (2009) Langmuir 26:371–377Google Scholar
  26. 26.
    Kempaiah R, Chung A, Maheshwari V (2011) ACS Nano 5:6025–6031Google Scholar
  27. 27.
    Wang GC, Li XF, Mo LJ, Song ZY, Chen W, Deng YQ, Zhao H, Qin E, Qin CF, Tang RK (2012) Angew Chem Int Ed 124:10728–10731Google Scholar
  28. 28.
    Lee J, Choi J, Park JH, Kim MH, Hong D, Cho H, Yang SH, Choi IS (2014) Angew Chem Int Ed 53:8056–8059Google Scholar
  29. 29.
    Liang K, Richardson JJ, Lee KB, Chung TD, Lee H, Choi IS (2011) J Am Chem Soc 133:2795–2797Google Scholar
  30. 30.
    Wang B, Wang GC, Zhao BJ, Chen JJ, Zhang XY, Tang RK (2014) Chem Sci 5:3463–3468Google Scholar
  31. 31.
    Pipattanawarothai A, Suksai C, Srisook K, Trakulsujaritchok T (2017) Carbohydr Polym 178:190–199Google Scholar
  32. 32.
    Park JH, Choi IS, Yang SH (2015) Chem Commun 51:5523–5525Google Scholar
  33. 33.
    Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Science 312:885–888Google Scholar
  34. 34.
    Wang GC, Cao RY, Chen R, Mo LJ, Han JF, Wang XY, Xu XR, Jiang T, Deng YQ, Lyu K, Zhu SY, Qin ED, Tang RK, Qin CF (2013) Proc Natl Acad Sci USA 110:7619–7624Google Scholar
  35. 35.
    Karlsson O, Lilja C (2008) Zoology 111:494–502Google Scholar
  36. 36.
    Richert L, Lavalle P, Payan E, Shu XZ, Prestwich GD, Stoltz JF, Schaaf P, Voegel JC, Picart C (2004) Langmuir 20:448–458Google Scholar
  37. 37.
    Park JH, Hong D, Lee J, Choi IS (2016) Acc Chem Res 49:792–800Google Scholar
  38. 38.
    Liang K, Richardson JJ, Doonan CJ, Mulet X, Ju Y, Cui JW, Caruso F, Falcaro P (2017) Angew Chem Int Ed 56:8510–8515Google Scholar
  39. 39.
    Yang SH, Ko EH, Choi IS (2012) Langmuir 28:2151–2155Google Scholar
  40. 40.
    Hildebrand M (2008) Chem Rev 108:4855–4874Google Scholar
  41. 41.
    Sileika TS, Barrett DG, Zhang R, Lau KHA, Messersmith PB (2013) Angew Chem Int Ed 52:10766–10770Google Scholar
  42. 42.
    Lee H, Dellatore SM, Miller WM, Messersmith PB (2017) Science 318:426–430Google Scholar
  43. 43.
    Lee J, Cho H, Choi J, Doyeon K (2015) Nanoscale 7:18918–18922Google Scholar
  44. 44.
    Kim BJ, Park T, Moon HC, Park SY, Hong D, Ko EH, Kim JY, Hong JW, Han SW, Kim YG, Choi IS (2014) Angew Chem Int Ed 53:14443–14446Google Scholar
  45. 45.
    Fakhrullin RF, García-Alonso J, Paunov VN (2010) Soft Matter 6:391–397Google Scholar
  46. 46.
    Kempaiah R, Salqado S, Chung WL, Maheshwari V (2011) Chem Commun 47:11480–11482Google Scholar
  47. 47.
    Fakhrullin RF, Lvov YM (2012) ACS Nano 6:4557–4565Google Scholar
  48. 48.
    Guo JL, Suástegui M, Sakimoto KK, Moody VM, Xiao G, Nocera DG, Joshi NS (2018) Science 362:813–816Google Scholar
  49. 49.
    Zhang QC, Song RB, Wu YC, Lin ZQ, Xie J, Tan CH, Loo JSC, Cao B, Zhang JR, Zhu JJ (2017) Angew Chem Int Ed 56:10516–10520Google Scholar
  50. 50.
    Liang K, Richardson JJ, Cui JW, Caruso F, Doonan CJ, Falcaro P (2016) Adv Mater 28:7910–7914Google Scholar
  51. 51.
    McKenney PT, Driks A, Eichenberger P (2013) Nat Rev Microbiol 11:33–44Google Scholar
  52. 52.
    Riccò R, Liang WB, Li SB, Gassensmith JJ, Caruso F, Doonan C, Falcaro P (2018) ACS Nano 12:13–23Google Scholar
  53. 53.
    Hubel A (2011) Transfusion 51:82S–86SGoogle Scholar
  54. 54.
    Wongu Y, Eun HK, Kim MH, Park M, Hong D, Seisenbaeva GA, Kessler VG, Choi IS (2017) Angew Chem Int Ed 129:10842–10846Google Scholar
  55. 55.
    Lee J, Choi IS, Yang SH (2015) Bull Korean Chem Soc 36:1278–1281Google Scholar
  56. 56.
    Kim BJ, Han S, Lee KB, Choi IS (2017) Adv Mater 29:1700784Google Scholar
  57. 57.
    Smith AE, Helenius A (2004) Science 304:237–242Google Scholar
  58. 58.
    Flynn CE, Lee SW, Peelle BR, Belcher AM (2003) Acta Mater 51:5867–5880Google Scholar
  59. 59.
    Zhou HY, Wang GC, Wang XY, Song ZY, Tang RK (2017) Angew Chem Int Ed 129:1–6Google Scholar
  60. 60.
    Sanchez C, Arribart H, Guille MMG (2005) Nat Mater 4:277–288Google Scholar
  61. 61.
    Slocik JM, Naik RR, Stone MO, Wright DW (2015) J Mater Chem 15:749–753Google Scholar
  62. 62.
    Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Adv Mater 11:253–256Google Scholar
  63. 63.
    Snyder JC, Wiedenheft B, Lavin M, Roberto FF, Spuhler J, Ortmann AC, Douglas T, Young M (2007) Natl Acad Sci USA 2007(104):19102–19107Google Scholar
  64. 64.
    Wallace AF, DeYoreo JJ, Dove PM (2009) J Am Chem Soc 131:5244–5250Google Scholar
  65. 65.
    Zhou K, Zhang JT, Wang QB (2015) Small 11:2505–2509Google Scholar
  66. 66.
    Lee Y, Kim J, Yun DS, Nam YS, Yang SH, Belcher AM (2012) Energy Environ Sci 5:8328–8334Google Scholar
  67. 67.
    Reches M, Gazit E (2003) Science 300:625–627Google Scholar
  68. 68.
    Knez M, Sumser M, Bittner AM, Wege C, Jeske H, Martin TP, Kern K (2004) Adv Funct Mater 14:116–124Google Scholar
  69. 69.
    Tao JH, Zhou DM, Zhang ZS, Xu XR, Tang RK (2009) Proc Natl Acad Sci 106:22096–22101Google Scholar
  70. 70.
    Belton DJ, Patwardhan SV, Annenkov VV, Danilovtseva EN, Perry CC (2008) Proc Natl Acad Sci USA 105:5963–5968Google Scholar
  71. 71.
    Chen XF, Fernando GJP, Crichton ML, Flaim C, Yukiko SR, Fairmaid EJ, Corbett HJ, Primiero CA, Ansaldo AB, Frazer IH, Brown LE, Kendall MAF (2011) J Control Release 152:349–355Google Scholar
  72. 72.
    Walker JJ, Spear JR, Pace NR (2005) Nature 434:1011–1014Google Scholar
  73. 73.
    Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Nature 421:841–843Google Scholar
  74. 74.
    Wang GC, Wang HJ, Zhou HY, Nian QG, Song ZY, Deng YQ, Wang XY, Zhu SY, Li XF, Qin CF, Tang RK (2015) ACS Nano 9:799–808Google Scholar
  75. 75.
    Smith AE, Helenius A (2004) Science 304:237–242Google Scholar
  76. 76.
    Uyeki TM (2008) Respirology 13:S2–S9Google Scholar
  77. 77.
    Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, Liu L, Yoon KJ, Krauss S, Webster RG (1999) J Virol 73:8851–8856Google Scholar
  78. 78.
    Cowling BJ, Jin LM, Lau EHY, Liao QH, Wu P, Jiang H, Tsang KL, Zheng JD, Fang J, Chang ZR, Ni MY, Zhang Q, Ip DKM, Yu JX, Li Y, Wang LP, Tu WX, Meng L, Wu JTK, Luo HM, Li Q, Shu YL, Li ZJ, Feng ZJ, Yang WZ, Wang Y, Leung GM, Yu HJ (2013) Lancet 382:129–137Google Scholar
  79. 79.
    Chan PKS (2002) Clin Infect Dis 34:S58–S64Google Scholar
  80. 80.
    Kageyama K, Fujisaki S, Takashita E, Xu H, Yamada S, Uchida Y, Neumann G, Saito T, Kawaoka Y, Tashiro M (2013) Euro Surveill 18:7–21Google Scholar
  81. 81.
    Hernández-Hernández A, Vidal ML, Gómez-Morales J, Rodríguez-Navarro AB, Labas V, Gautron J, Nys Y, García Ruiz JM (2008) J Cryst Growth 310:1754–1759Google Scholar
  82. 82.
    Wang XY, Sun CJ, Li PC, Wu TJ, Zhou HY, Yang D, Liu YC, Ma XC, Song ZY, Nian QG, Feng LQ, Qin CF, Chen L, Tang RK (2016) Adv Mater 28:694–700Google Scholar
  83. 83.
    Neumann G, Chen HL, Gao GF, Shu YL, Kawaoka Y (2010) Cell Res 20:51–61Google Scholar
  84. 84.
    Wang B, Liu P, Tang RK (2010) BioEssays 32:698–708Google Scholar
  85. 85.
    Wang XY, Liu XY, Xiao Y, Hao HB, Zhang Y, Tang RK (2018) Chem Eur J 24:11518–11529Google Scholar
  86. 86.
    Wang XY, Xiao Y, Hao HB, Zhang Y, Xu XR, Tang RK (2018) Adv Therap 1:1800079Google Scholar
  87. 87.
    Wang XY, Deng YQ, Li SH, Wang GC, Qin E, Xu XR, Tang RK, Qin CF (2012) Adv Healthc Mater 1:443–449Google Scholar
  88. 88.
    Roberts DM, Nanda A, Havenga MJE, Abbink P, Lynch DM, Ewald BA, Liu JY, Thorner AR, Swanson PE, Gorgone DA, Lifton MA, Lemckert AAC, Holterman L, Chen B, Dilraj A, Carville A, Mansfield KG, Goudsmit J, Barouch DH (2006) Nature 441:239–243Google Scholar
  89. 89.
    Wang XY, Deng YQ, Yang D, Xiao Y, Zhao H, Nian QG, Xu XR, Li XF, Tang RK, Qin CF (2017) Chem Sci 8:8240–8824Google Scholar
  90. 90.
    Ulmer JB, Valley U, Rappuoli R (2006) Nat Biotechnol 24:1377–1383Google Scholar
  91. 91.
    Knuschke T, Sokolova V, Rotan O, Wadwa M, Tenbusch M, Hansen W, Staeheli P, Epple M, Buer J, Westendorf AM (2013) J Immunol 190:6221–6229Google Scholar
  92. 92.
    He Q, Mitchell A, Morcol T, Bell SJD (2002) Clin Diagn Lab Immun 9:1021–1024Google Scholar
  93. 93.
    Wang XY, Yang D, Li SH, Xu XR, Qin CF, Tang RK (2016) Biomaterials 106:268–294Google Scholar
  94. 94.
    Li SB, Dharmarwardana M, Welch RP, Benjamin CE, Shamir A, Nielsen SO, Gassensmith JJ (2018) ACS Appl Mater Inter 10:18161–18169Google Scholar
  95. 95.
    Luzuriaga MA, Welch RP, Dharmarwardana M, Benjamin CE, Li SB, Shahrivarkevishahi A, Popal S, Tuong L, Creswell C, Gassensmith JJ (2019) ACS Appl Mater Inter 11:9740–9746Google Scholar
  96. 96.
    Paerl HW, Huisman J (2008) Science 320:57–58Google Scholar
  97. 97.
    Funari E, Testai E (2008) Crit Rev Toxicol 38:97–125Google Scholar
  98. 98.
    Pu P, Hu W, Yan JS, Wang GX, Hu CH (1998) Ecol Eng 10:179–190Google Scholar
  99. 99.
    Xiong W, Tang YM, Shao CY, Zhao YQ, Jin B, Huang TT, Miao YN, Shu L, Ma WM, Xu XR, Tang RK (2017) Environ Sci Technol 51:12717–12726Google Scholar
  100. 100.
    Xiong W, Zhao XH, Zhu GX, Shao CY, Li YL, Ma WM, Xu XR, Tang RK (2015) Angew Chem Int Ed 54:11961–11965Google Scholar
  101. 101.
    Zhao RB, Liu XY, Xinyan Yang XY, Jin B, Shao CY, Kang WJ, Tang RK (2018) Adv Mater 30:1801304Google Scholar
  102. 102.
    Heuer-Jungemann A, Harimech PK, Brown T, Kanaras AG (2013) Nanoscale 5:9503–9510Google Scholar
  103. 103.
    Johnstone RW, Ruefli AA, Lowe SW (2002) Cell 108:153–164Google Scholar
  104. 104.
    Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y (2009) Nat Mater 8:935–939Google Scholar
  105. 105.
    Miyata H, Yamasaki M, Makino T, Miyazaki Y, Takahashi T, Kurokawa Y, Nakajima K, Takiguchi S, Mori M, Doki Y (2015) J Surg Oncol 112:60–65Google Scholar
  106. 106.
    Sage AP, Tintut Y, Demer LL (2010) Nat Rev Cardiol 7:528–536Google Scholar
  107. 107.
    Zhao RB, Wang B, Yang XY, Xiao Y, Wang XY, Shao CY, Tang RK (2016) Angew Chem Int Ed 55:5225–5229Google Scholar
  108. 108.
    Low PS, Henne WA, Doorneweerd DD (2008) Acc Chem Res 41:120–129Google Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Center for Biomaterials and BiopathwaysZhejiang UniversityHangzhouChina
  2. 2.Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhouChina

Personalised recommendations