Skip to main content
Log in

Experimental and theoretical studies of the porphyrin ligand effect on the electronic structure and reactivity of oxoiron(iv) porphyrin π-cation-radical complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Oxoiron(IV) porphyrin π-cation-radical complexes (Cpd I) have been studied as models for reactive intermediates called compound I in cytochromes P450, peroxidases, and catalases. It has been well known that the electronic structure and reactivity of Cpd I are modulated by the substituted position and the electron-withdrawing ability of the substituent. However, there still remain two major questions: (1) how many electronegative halogen atoms should be introduced in the meso-phenyl group to switch the porphyrin π-cation-radical state of Cpd I? (2) How does the electron-withdrawing effect of the substituent modulate the reactivity of Cpd I? To answer these two questions, we here performed experimental and theoretical studies on the electron-withdrawing effect of the meso-substituent. We gradually increased the electron-withdrawing effect by increasing the number of fluorine atoms in the meso-phenyl group. Spectroscopic analyses of these Cpd I models reveal that the porphyrin radical state shifts from having a2u radical character to having a1u radical character with an increase in the number of the fluorine atoms in the phenyl group, and the ground state of Cpd I switches from the a2u state to the a1u state when four fluorine atoms are introduced in the meso-phenyl group. The switch of the radical state is predicted well by LC-BLYP, but not by the commonly used B3LYP. The theoretical calculations indicate that the electron-withdrawing substituent makes Cpd I more reactive by stabilizing the ferric porphyrin state (product state) more than the Cpd I state (reactant state), generating a larger free energy change in the oxygenation reaction (ΔG) of Cpd I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Poulos TL (2014) Heme enzyme structure and function. Chem Rev 114:3919–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu W, Groves JT (2015) Manganese catalyzed C-H halogenation. Acc Chem Res 48:1727–1735

    Article  CAS  PubMed  Google Scholar 

  3. Fujii H (2016) Model complexes of heme peroxidases. In: Raven E, Dunford B (eds) Heme peroxidases. The Royal Society of Chemistry, Cambridge, pp 183–217

    Google Scholar 

  4. Puri M, Que L Jr (2015) Toward the synthesis of more reactive S = 2 non-heme oxoiron(IV) complexes. Acc Chem Res 48:2443–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nam W (2015) Synthetic mononuclear nonheme iron-oxygen intermediates. Acc Chem Res 48:2415–2423

    Article  CAS  PubMed  Google Scholar 

  6. Solomon EI, Light KM, Liu LV, Srnec M, Wong SD (2013) Geometric and electronic structure contributions to function in non-heme iron enzymes. Acc Chem Res 46:2725–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Groves JT, Haushalter RC, Nakamura M, Nemo TE, Evans BJ (1981) High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450. J Am Chem Soc 103:2884–2886

    Article  CAS  Google Scholar 

  8. Balch AL, Latos-Grazynski L, Renner MW (1985) Oxidation of red ferryl [(FeIVO)2+] porphyrin complexes to green ferryl [(FeIVO)2+] porphyrin radical complexes. J Am Chem Soc 107:2983–2985

    Article  CAS  Google Scholar 

  9. Sugimoto H, Tung H, Sawyer DH (1988) The formation, characterization, and reactivity of the oxene adduct of [tetrakis(2,6-dichlorophenyl)porphinato]iron(III) perchlorate in acetonitrile. Model for the reactive intermediate of cytochrome P-450. J Am Chem Soc 110:2465–2470

    Article  CAS  Google Scholar 

  10. Gross Z, Nimri SA (1994) A pronounced axial ligand effect on the reactivity of oxoiron(IV) porphyrin cation radicals. Inorg Chem 33:1731–1732

    Article  CAS  Google Scholar 

  11. Gross Z, Nimri S, Barzilay CM, Simkhovich L (1997) Reaction profile of the last step in cytochrome P-450 catalysis revealed by studies of model complexes. J Biol Inorg Chem 2:492–506

    Article  CAS  Google Scholar 

  12. Gold A, Jayaraj K, Doppelt P, Weiss R, Chottard G, Bill E, Ding X, Trautwein AX (1988) Oxoferryl complexes of the halogenated (porphinato)iron catalyst [tetrakis(2,6-dichlorophenyl)porphinato]iron. J Am Chem Soc 110:5756–5761

    Article  CAS  Google Scholar 

  13. Mandon D, Weiss R, Jayaraj K, Gold A, Terner J, Bill E, Trautwein AX (1992) Models for peroxidase compound I: generation and spectroscopic characterization of new oxoferryl porphyrin π cation radical species. Inorg Chem 31:4404–4409

    Article  CAS  Google Scholar 

  14. Fujii H (1994) Characterization of high valent iron porphyrin in catalytic reaction by iron(III) tetrapentafluorophenylporphyrin. Chem Lett 23:1491–1494

    Article  Google Scholar 

  15. Cong Z, Kurahashi T, Fujii H (2011) Oxidation of chloride and subsequent chlorination of organic compounds by oxoiron(IV) porphyrin π-cation radicals. Angew Chem Int Ed 50:9935–9939

    Article  CAS  Google Scholar 

  16. Fujii H (1993) Effects of the electron-withdrawing power of substituents on the electronic structure and reactivity in oxoiron(IV) porphyrin π-cation radical complexes. J Am Chem Soc 115:4641–4648

    Article  CAS  Google Scholar 

  17. Fujii H, Ichikawa K (1992) Preparation and characterization of an A1u (Oxo) iron(IV) porphyrin π-cation-radical complex. Inorg Chem 31:1110–1112

    Article  CAS  Google Scholar 

  18. Takahashi A, Kurahashi T, Fujii H (2009) Effect of imidazole and phenolate axial ligands on the electronic structure and reactivity of oxoiron(IV) porphyrin π-cation radical complexes: drastic increase in oxo-transfer and hydrogen abstraction reactivities. Inorg Chem 48:2614–2625

    Article  CAS  PubMed  Google Scholar 

  19. Fujii H, Yoshimura T, Kamada H (1997) Imidazole and p-nitrophenolate complexes of oxoiron(IV) porphyrin π-cation radicals as models for compounds I of peroxidase and catalase. Inorg Chem 36:6142–6143

    Article  CAS  Google Scholar 

  20. Traylor TG, Xu F (1988) Catalytic asymmetric epoxidations with chiral iron porphyrins. J Am Chem Soc 110:1953–1958

    Article  CAS  Google Scholar 

  21. Traylor TG, Nakano T, Dunlap BE, Traylor PS, Dolphin D (1986) Mechanisms of hemin-catalyzed alkene epoxidation. The effect of catalyst on the regiochemistry of epoxidation. J Am Chem Soc 108:2782–2784

    Article  CAS  Google Scholar 

  22. Traylor TG, Nakano T, Mikzstal AR, Dunlap BE (1987) Transient formation of N-alkylhemins during hemin-catalyzed epoxidation of norbornene. Evidence concerning the mechanism of epoxidation. J Am Chem Soc 109:3625–3632

    Article  CAS  Google Scholar 

  23. Collman JP, Brauman JI, Meunier B, Rayback SA, Kodadek T (1984) Epoxidation of olefins by cytochrome P-450 model compounds: mechanism ofoxygen atom transfer. Proc Natl Acad Sci USA 81:3245–3248

    Article  CAS  PubMed  Google Scholar 

  24. Collman JP, Brauman JI, Meunier B, Hayashi T, Kodadek T, Rayback SA (1985) Epoxidation of olefins by cytochrome P-450 model compounds: kinetics and stereochemistry of oxygen atom transfer and origin of shape selectivity. J Am Chem Soc 107:2000–2005

    Article  CAS  Google Scholar 

  25. Collman JP, Kodadek T, Rayback SA, Brauman JI, Papazian LM (1985) Mechanism of oxygen atom transfer from high valent iron porphyrins to olefins: implications to the biological epoxidation of olefins by cytochrome P-450. J Am Chem Soc 107:4343–4345

    Article  Google Scholar 

  26. Fujii H, Yoshimura T, Kamada H (1996) ESR studies of A1u and a 2u oxoiron(IV) porphyrin π-cation radical complexes. Spin coupling between ferryl iron and A1u/a 2u orbitals. Inorg Chem 35:2373–2377

    Article  CAS  PubMed  Google Scholar 

  27. Kitagawa T, Mizutani Y (1994) Resonance Raman spectra of highly oxidized metalloporphyrins and heme proteins. Coord Chem Rev 135–136:685–735

    Article  Google Scholar 

  28. Czarnecki K, Proniewicz LM, Fujii H, Kincaid JR (1996) Resonance Raman spectrum of a 2A1u ferryl porphyrin π-cation radical. J Am Chem Soc 118:4680–4685

    Article  CAS  Google Scholar 

  29. Czarnecki K, Minri S, Gross Z, Proniewicz LM, Kincaid JR (1996) Direct resonance Raman evidence for a trans influence on the ferryl fragment in models of compound I intermediates of heme enzymes. J Am Chem Soc 118:2929–2935

    Article  CAS  Google Scholar 

  30. Czarnecki K, Fujii H, Kincaid JR (1999) Resonance Raman spectra of legitimate models for the ubiquitous compound I intermediates of oxidized heme enzymes. J Am Chem Soc 121:7953–7954

    Article  CAS  Google Scholar 

  31. Boso B, Lagn G, McMurry TJ, Groves JT (1983) Mössbauer effect study of tight spin coupling in oxidized chloro-5,10,15,20,-tetra(mesityl)porphyrinateiron(III). J. Chem. Phys. 79:1122–1126

    Article  CAS  Google Scholar 

  32. Jones RJ, Jayaraj K, Gold A, Kirk ML (1998) Ground and excited state spectroscopic probes of [(TMP)Fe(IV) = O] + : the first magnetic circular dichroism study of a model peroxidase compound I intermediate. Inorg Chem 37:2842–2843

    Article  CAS  Google Scholar 

  33. Fujii H (2002) Electronic structure and reactivity of high-valent oxo iron porphyrins. Coord Chem Rev 226:51–60

    Article  CAS  Google Scholar 

  34. Asaka M, Fujii H (2016) Participation of electron transfer process in rate-limiting step of aromatic hydroxylation reactions by compound I models of heme enzymes. J Am Chem Soc 138:8048–8051

    Article  CAS  PubMed  Google Scholar 

  35. Lindsey JS, Wagner RW (1989) Investigation of the synthesis of ortho-substituted tetraphenylporphyrins. J Org Chem 54:828–836

    Article  CAS  Google Scholar 

  36. Wylie GRA, Munro OQ, Schulz CE, Scheidt WR (2007) Structure and physical characterization of (nitrato)iron(III) porphyrinates [Fe(por)(NO3)]–variable coordination of nitrate. Polyhedron 26:4664–4672

    Article  CAS  Google Scholar 

  37. Gaussian 09, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford

  38. Patterson WR, Poulos TL, Goodin DB (1995) Identification of a porphyrin π cation radical in ascorbate peroxidase compound I. Biochemistry 34:4342–4345

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi A, Yamaki D, Ikemura K, Kurahashi T, Ogura T, Hada M, Fujii H (2015) Effect of the axial ligand on the reactivity of the oxoiron(IV) porphyrin π-cation radical complex: higher stabilization of the product state relative to the reactant state. Inorg Chem 51:7296–7305

    Article  CAS  Google Scholar 

  40. Sinna MA, Kumar S, Kumar D, Fornarini S, Crestoni ME, de Visser SP (2015) A comprehensive test set of epoxidation rate constants for iron(IV)–oxo porphyrin cation radical complexes. Chem Sci 6:1516–1529

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from JSPS (Grant nos. 25288032 and 17H03032) and CREST. We thank IMS for assistance of NMR and EPR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Fujii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishimizu, Y., Ma, Z., Hada, M. et al. Experimental and theoretical studies of the porphyrin ligand effect on the electronic structure and reactivity of oxoiron(iv) porphyrin π-cation-radical complexes. J Biol Inorg Chem 24, 483–494 (2019). https://doi.org/10.1007/s00775-019-01664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01664-3

Keywords

Navigation