Skip to main content
Log in

New organoruthenium compounds with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline: synthesis, characterization, cytotoxicity, and investigation of mechanism of action

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Three new ruthenium(II)-arene complexes with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline (ppf) of general formula: C1 ([(ƞ6-benzene)Ru(ppf)Cl]PF6, C2 ([(ƞ6-toluene)Ru(ppf)Cl]PF6) and C3 ([(ƞ6-p-cymene)Ru(ppf)Cl]PF6) have been synthesized. The structures of complexes were determined by elemental analysis, IR, ESI–MS, as well as with 1H and 13C NMR spectroscopy. Cytotoxic activity has been evaluated in three different human neoplastic cell lines (A549, A375, LS 174T) and in one human non-tumor cell line (MRC-5), by the MTT assay. Complexes C1–C3 showed IC50 values in the micromolar range below 100 µM. Complex C3, carrying ƞ6-p-cymene as the arene ligand, exhibited cytoselective activity toward human malignant melanoma A375 cells (IC50 = 15.8 ± 2.7 µM), and has been selected for further analyses of its biological effects. Drug-accumulation study performed in the A375 cells disclosed that C3 possess lower ability of entering the cells compared to cisplatin and distributes approximately equally in the cytosol and membrane/organelle fraction of cells. Investigations in the 3D model of A375 cells, disclosed different effects of the complex C3 and cisplatin on growth of multicellular tumor spheroids (MCTSs). While the size of cisplatin-treated MCTSs decreased with time, MCTSs treated with C3 continued to growth. Differences in structural organization and biological activity of this type of ruthenium(II)-arene complexes versus cisplatin in A375 malignant melanoma cells pointed out their different modes of action, and necessity for further biological studies and optimizations for potential applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NAMI-A:

[ImH][trans-RuCl4(DMSO)(Im)]

KP1019:

[transtetrachlorobis-(1H-indazole)ruthenate(III)]

KP1339:

Sodium [transtetrachlorobis-(1H-indazole)ruthenate(III)]

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

RNA:

Ribonucleic acid

PDT:

Photodynamic therapy

A549:

Human lung adenocarcinoma cells

A375:

Human malignant melanoma cells

LS 174T:

Human colorectal adenocarcinoma cells

MRC-5:

Non-tumor human lung fibroblast cells

ICP-MS:

Inductively coupled plasma mass spectrometry

RPMI 1640:

Roswell Park Memorial Institute nutrient medium (1640)

FCS:

Fetal calf serum

HEPES:

4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid

MTT:

3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide dye

SDS:

Sodium dodecyl sulfate

PI:

Propidium iodide

PBS:

Phosphate-buffered saline

RNaseA:

Ribonuclease A

FACS:

Fluorescence-activated cell sorting

AO:

Acridine orange

EtBr:

Ethidium bromide

FITC:

Fluorescein isothiocyanate

MCTS:

Multicellular tumor spheroid

References

  1. Jakupec MA, Galanski M, Arion VB, Hartinger CG, Keppler BK (2008) Dalton Trans 2:183–194

    Article  Google Scholar 

  2. Sledge G, Loehrer PJ, Roth BJ, Einhorn LH (1988) J Clin Oncol 6:1811–1814

    Article  PubMed  Google Scholar 

  3. Florea A-M, Büsselberg D (2011) Cancers 3:1351–1371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Liang X-J, Meng H, Wang Y, He H, Meng J, Lu J, Wang PC, Zhao Y, Gao X, Sun B (2010) Proc Natl Acad Sci USA 107:7449–7454

    Article  PubMed  Google Scholar 

  5. Fong TT-H, Lok C-N, Chung CY-S, Fung Y-ME, Chow P-K, Wan P-K, Che C-M (2016) Angew Chem Int Ed 55:11935–11939

    Article  CAS  Google Scholar 

  6. Hu PC, Wang Y, Zhang Y, Song H, Gao FF, Lin HY, Wang ZH, Wei L, Yang F (2016) RSC Adv 6:29963–29976

    Article  CAS  Google Scholar 

  7. Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH (2004) Clin Cancer Res 10:3717–3727

    Article  PubMed  CAS  Google Scholar 

  8. Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK (2006) J Inorg Biochem 100:891–904

    Article  PubMed  CAS  Google Scholar 

  9. Bytzek AK, Koellensperger G, Keppler BK, Hartinger CG (2016) J Inorg Biochem 160:250–255

    Article  PubMed  CAS  Google Scholar 

  10. Murray BS, Babak MV, Hartinger CG, Dyson PJ (2016) Coord Chem Rev 306(part 1):86–114

    Article  CAS  Google Scholar 

  11. Dougan SJ, Sadler PJ (2007) Chimia 61:704–715

    Article  CAS  Google Scholar 

  12. Suss-Fink G (2010) Dalton Trans 39:1673–1688

    Article  PubMed  Google Scholar 

  13. Morris RE, Aird RE, del Socorro Murdoch P, Chen H, Cummings J, Hughes ND, Parsons S, Parkin A, Boydand G, Jodrell DI (2001) J Med Chem 44:3616–3621

    Article  PubMed  CAS  Google Scholar 

  14. Notaro A, Gasser G (2017) Chem Soc Rev 46:7317–7337

    Article  PubMed  CAS  Google Scholar 

  15. Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS (2017) Chem Soc Rev 46:5771–5804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Monro S, Colón KL, Yin H, Roque J, Konda P, Gujar S, Thummel RP, Lilge L, Cameron CG, McFarland SA (2018) Chem Rev. https://doi.org/10.1021/acs.chemrev.8b00211

    Article  PubMed  Google Scholar 

  17. Jakubaszek M, Goud B, Ferrari S, Gasser G (2018) Chem Commun 54:13040–13059

    Article  CAS  Google Scholar 

  18. Heinemann F, Karges J, Gasser G (2017) Acc Chem Res 50:2727–2736

    Article  PubMed  CAS  Google Scholar 

  19. Song H, Kaiser JT, Barton JK (2012) Nat. Chem 4:615–620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kilah NL, Meggers E (2012) Aust J Chem 65:1325–1332

    Article  CAS  Google Scholar 

  21. Dwyer FP, Gyarfas EC, Rogers WP, Koch JH (1952) Nature 170:190

    Article  PubMed  CAS  Google Scholar 

  22. Tan C, Wu S, Lai S, Wang M, Chen Y, Zhou L, Zhu Y, Lian W, Peng W, Ji L (2011) Dalton Trans 40:8611–8621

    Article  PubMed  CAS  Google Scholar 

  23. Baroud AA, Mihajlović-Lalić LJE, Stanković D, Kajzerberger M, van Hecke K, Grgurić-Šipka S, Savić A (2017) J Serb Chem Soc 82(3):267–275

    CAS  Google Scholar 

  24. Jovanović K, Tanić M, Ivanović I, Gligorijević N, Dojčinović B, Radulović S (2016) J Inorg Biochem 163:362–373

    Article  PubMed  CAS  Google Scholar 

  25. Jensen SB, Rodger SJ, Spicer MD (1998) J Organomet Chem 556:151–158

    Article  CAS  Google Scholar 

  26. Gillard RD, Hill REE, Maskill R (1970) J Chem Soc A 1447–1451

  27. Supino R (1995) Humana Press 43:137–149

    CAS  Google Scholar 

  28. Strober W (2001) Curr Protoc Immunol Appendix 3B:1–2

  29. Ormerod MG (1994) Oxford University Press, Oxford, 119–125

  30. Spector DL, Goldman RD, Leinwand LA (1998) Cold Spring Harbor Laboratory Press, 1

  31. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Cytometry 31:1–9

    Article  PubMed  Google Scholar 

  32. Ott I, Biot C, Hartinger C (2014) Wiley, New York, 63–97

  33. Selby M, Delosh R, Laudeman J, Ogle C, Reinhart R, Silvers T, Lawrence S, Kinders R, Parchment R, Teicher BA, Evans DM (2017) SLAS Discov. 22(5):473–483

    PubMed  CAS  Google Scholar 

  34. Sarangapani S, Patil A, Ngeow YK, Elsa Mohan R, Asundi A, Lang MJ (2018) Integr Biol 10(5):313–324

    Article  CAS  Google Scholar 

  35. Patra M, Joshi T, Pierroz V, Ingram K, Kaiser M, Ferrari S, Spingler B, Keiser J, Gasser G (2013) Chem Eur J 19:14768–14772

    Article  PubMed  CAS  Google Scholar 

  36. Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Chem Commun 4764–4776

  37. Nikolić S, Rangasamy L, Gligorijević N, Aranđelović S, Radulović S, Gasser G, Grgurić-Šipka S (2016) J Inorg Biochem 160:156–165

    Article  PubMed  CAS  Google Scholar 

  38. Valladolid J, Hortigüela C, Busto N, Espino G, Rodríguez AM, Leal JM, Jalón FA, Manzano BR, Carbayo A, García B (2014) Dalton Trans 43:2629–2645

    Article  PubMed  CAS  Google Scholar 

  39. Kepp O, Galluzzi L, Lipinski M, Yuanand J, Kroemer G (2011) Nat Rev Drug Discov 10:221–237

    Article  PubMed  CAS  Google Scholar 

  40. Berridge MV, Tan AS (1993) Arch Biochem Biophys 303(2):474–482

    Article  PubMed  CAS  Google Scholar 

  41. Wang D, Lippard S (2005) Nat Rev Drug Discov 4:307–320

    Article  PubMed  CAS  Google Scholar 

  42. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Cell Death Differ 16:3–11

    Article  PubMed  CAS  Google Scholar 

  43. Sun X, Shi B, Zheng H, Min L, Yang J, Li X, Liao X, Huang W, Zhang M, Xu S, Zhu Z, Cui H, Liu X (2018) Cell Death Dis 9:260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Radisavljević S, Bratsos I, Scheurer A, Korzekwa J, Masnikosa R, Tot A, Gligorijević N, Radulović S, Rilak Simović A (2018) Dalton Trans 47(38):13696–13712

    Article  PubMed  Google Scholar 

  45. Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ (2012) Pharmacol Therapeut 136:35–55

    Article  CAS  Google Scholar 

  46. Corazao-Rozas P, Guerreschi P, André F, Gabert PE, Lancel S, Dekiouk S, Fontaine D, Tardivel M, Savina A, Quesnel B, Mortier L, Marchetti P, Kluza J (2016) Oncotarget 7(26):39473–39485

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hong SK, Starenki D, Wu PK, Park JI (2017) Cancer Biol Ther 18(2):106–114

    Article  PubMed  CAS  Google Scholar 

  48. Acland M, Mittal P, Lokman NA, Klingler-Hoffmann M, Oehler MK, Hoffmann P (2018) Proteomics Clin Appl 12(3):1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant numbers 172035 and III 41026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Grgurić-Šipka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 943 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlović, M., Nikolić, S., Gligorijević, N. et al. New organoruthenium compounds with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline: synthesis, characterization, cytotoxicity, and investigation of mechanism of action. J Biol Inorg Chem 24, 297–310 (2019). https://doi.org/10.1007/s00775-019-01647-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01647-4

Keywords

Navigation