Advertisement

Modulatory effects of fibronectin on calcium oxalate crystallization, growth, aggregation, adhesion on renal tubular cells, and invasion through extracellular matrix

  • Supaporn Khamchun
  • Kanyarat Sueksakit
  • Sakdithep Chaiyarit
  • Visith ThongboonkerdEmail author
Original Paper
  • 76 Downloads

Abstract

Fibronectin, an extracellular matrix (ECM) protein, has been thought to be involved in pathogenic mechanisms of kidney stone disease, especially calcium oxalate (CaOx) type. Nevertheless, its precise roles in modulation of CaOx crystal remained unclear. We thus performed a systematic evaluation of effects of fibronectin on CaOx monohydrate (COM) crystal (the major causative chemical crystal in kidney stone formation) in various stages of kidney stone pathogenesis, including crystallization, crystal growth, aggregation, adhesion onto renal tubular cells, and invasion through ECM in renal interstitium. The data showed that fibronectin significantly decreased crystallization, growth and adhesive capability of COM crystals in a dose-dependent manner. In contrast, COM crystal aggregation and invasion through ECM migration chamber were significantly enhanced by fibronectin in a dose-dependent fashion. Sequence analysis revealed three calcium-binding and six oxalate-binding domains in fibronectin. Immunofluorescence study confirmed binding of fibronectin to COM crystals. Additionally, calcium- and oxalate-affinity assays confirmed depletion of both calcium and oxalate ions after incubation with fibronectin. Moreover, calcium-saturated and oxalate-saturated forms of fibronectin markedly reduced the modulatory activities of fibronectin on COM crystallization, crystal growth, aggregation, and adhesion onto the cells. These data strongly indicate the dual functions of fibronectin, which serves as an inhibitor for COM crystallization, crystal growth and adhesion onto renal tubular cells, but on the other hand, acts as a promoter for COM crystal aggregation and invasion through ECM. Finally, its COM crystal modulatory activities are most likely mediated through binding with calcium and oxalate ions on the crystals and in their environment.

Keywords

Inhibitor Kidney stone Modulator Promoter Renal interstitium Urine 

Notes

Acknowledgements

We are grateful to Dr. Kedsarin Fong-ngern for her technical assistance. This study was supported by Mahidol University research grant and the Thailand Research Fund (IRN60W0004 and IRG5980006).

Author contributions

SK, KS, SC and VT designed research; SK, KS and SC performed experiments; SK, KS, SC and VT analyzed data; SK, SC and VT wrote the manuscript; all authors reviewed and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Schubert G (2006) Urol Res 34:146–150CrossRefPubMedGoogle Scholar
  2. 2.
    Evan AP (2010) Pediatr Nephrol 25:831–841CrossRefPubMedGoogle Scholar
  3. 3.
    Aggarwal KP, Narula S, Kakkar M, Tandon C (2013) Biomed Res Int 2013:292953CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ratkalkar VN, Kleinman JG (2011) Clin Rev Bone Miner Metab 9:187–197CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vinaiphat A, Aluksanasuwan S, Manissorn J, Sutthimethakorn S, Thongboonkerd V (2017) Proteomics 17:1700192CrossRefGoogle Scholar
  6. 6.
    Peerapen P, Chaiyarit S, Thongboonkerd V (2018) Proteomics 18:e1800008CrossRefPubMedGoogle Scholar
  7. 7.
    Thongboonkerd V (2008) Contrib Nephrol 160:142–158CrossRefPubMedGoogle Scholar
  8. 8.
    Vinaiphat A, Thongboonkerd V (2017) Expert Rev Proteom 14:185–187CrossRefGoogle Scholar
  9. 9.
    Manissorn J, Thongboonkerd V (2016) J Proteom 142:53–61CrossRefGoogle Scholar
  10. 10.
    Pankov R, Yamada KM (2002) J Cell Sci 115:3861–3863CrossRefPubMedGoogle Scholar
  11. 11.
    Singh P, Carraher C, Schwarzbauer JE (2010) Annu Rev Cell Dev Biol 26:397–419CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yokoi H, Mukoyama M, Sugawara A, Mori K, Nagae T, Makino H, Suganami T, Yahata K, Fujinaga Y, Tanaka I, Nakao K (2002) Am J Physiol Renal Physiol 282:F933–F942CrossRefPubMedGoogle Scholar
  13. 13.
    Shui HA, Ka SM, Lin JC, Lee JH, Jin JS, Lin YF, Sheu LF, Chen A (2006) Nephrol Dial Transplant 21:1794–1802CrossRefPubMedGoogle Scholar
  14. 14.
    Fogo AB (2007) Pediatr Nephrol 22:2011–2022CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fagerudd JA, Groop PH, Honkanen E, Teppo AM, Gronhagen-Riska C (1997) Kidney Int Suppl 63:S195–S197PubMedGoogle Scholar
  16. 16.
    Lehmann R, Schleicher ED (2000) Clin Chim Acta 297:135–144CrossRefPubMedGoogle Scholar
  17. 17.
    Tsujihata M, Miyake O, Yoshimura K, Kakimoto K, Takahara S, Okuyama A (2001) Eur Urol 40:458–462CrossRefPubMedGoogle Scholar
  18. 18.
    Boonla C, Tosukhowong P, Spittau B, Schlosser A, Pimratana C, Krieglstein K (2014) Clin Chim Acta 429:81–89CrossRefPubMedGoogle Scholar
  19. 19.
    Tsujihata M, Miyake O, Yoshimura K, Kakimoto KI, Takahara S, Okuyama A (2000) J Urol 164:1718–1723CrossRefPubMedGoogle Scholar
  20. 20.
    Thongboonkerd V, Semangoen T, Chutipongtanate S (2006) Clin Chim Acta 367:120–131CrossRefPubMedGoogle Scholar
  21. 21.
    Thongboonkerd V, Semangoen T, Sinchaikul S, Chen ST (2008) J Proteome Res 7:4689–4700CrossRefPubMedGoogle Scholar
  22. 22.
    Chiangjong W, Thongboonkerd V (2012) Talanta 101:240–245CrossRefPubMedGoogle Scholar
  23. 23.
    Chiangjong W, Thongboonkerd V (2016) Sci Rep 6:24064CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Roop-ngam P, Chaiyarit S, Pongsakul N, Thongboonkerd V (2012) Biochem Biophys Res Commun 424:629–634CrossRefPubMedGoogle Scholar
  25. 25.
    Manissorn J, Fong-ngern K, Peerapen P, Thongboonkerd V (2017) Sci Rep 7:1798CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vinaiphat A, Charngkaew K, Thongboonkerd V (2018) Cell Death Discov 5:47CrossRefGoogle Scholar
  27. 27.
    Chaiyarit S, Thongboonkerd V (2017) Front Chem 5:113CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    To WS, Midwood KS (2011) Fibrogenesis Tissue Repair 4:21CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mao Y, Schwarzbauer JE (2005) Matrix Biol 24:389–399CrossRefPubMedGoogle Scholar
  30. 30.
    Tsujihata M, Yoshimura K, Tsujikawa K, Tei N, Okuyama A (2006) Int J Urol 13:743–746CrossRefPubMedGoogle Scholar
  31. 31.
    Saito N, Nishimura H, Kameoka S (2008) Mol Med Rep 1:77–81PubMedGoogle Scholar
  32. 32.
    Alias-Melgar A, Neave-Sanchez E, Suarez-Cuenca JA, Morales-Covarrubias J (2013) Ann Clin Lab Sci 43:420–423PubMedGoogle Scholar
  33. 33.
    Viswanathan P, Rimer JD, Kolbach AM, Ward MD, Kleinman JG, Wesson JA (2011) Urol Res 39:269–282CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lieske JC, Leonard R, Swift H, Toback FG (1996) Am J Physiol 270:F192–F199CrossRefPubMedGoogle Scholar
  35. 35.
    Bergsland KJ, Kelly JK, Coe BJ, Coe FL (2006) Am J Physiol Renal Physiol 291:F530–F536CrossRefPubMedGoogle Scholar
  36. 36.
    Shao C, Zhang F, Kemp MM, Linhardt RJ, Waisman DM, Head JF, Seaton BA (2006) J Biol Chem 281:31689–31695CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Scatena M, Liaw L, Giachelli CM (2007) Arterioscler Thromb Vasc Biol 27:2302–2309CrossRefPubMedGoogle Scholar
  38. 38.
    Munoz EM, Linhardt RJ (2004) Arterioscler Thromb Vasc Biol 24:1549–1557CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Angelucci A, Festuccia C, D’Andrea G, Teti A, Bologna M (2002) Biol Chem 383:229–234CrossRefPubMedGoogle Scholar
  40. 40.
    Salonen EM, Saksela O, Vartio T, Vaheri A, Nielsen LS, Zeuthen J (1985) J Biol Chem 260:12302–12307PubMedGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  • Supaporn Khamchun
    • 1
  • Kanyarat Sueksakit
    • 1
  • Sakdithep Chaiyarit
    • 1
  • Visith Thongboonkerd
    • 1
    Email author
  1. 1.Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand

Personalised recommendations