Skip to main content
Log in

The interplay between copper(II), human serum albumin, fatty acids, and carbonylating agent interferes with Cys 34 thiol reactivity and copper binding

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cys34 thiol group of human serum albumin (HSA) represents major plasma antioxidant. Its reactivity is influenced by multiple factors. The influence of fatty acids (FA; saturated, mono, and poly unsaturated acids from fish oil) binding to HSA, on copper(II) binding affinity and Cys34 thiol group accessibility/reactivity, in the presence of carbonylation agent (methylglyoxal, MG) was examined. HSA–copper(II) content, thiol group reactivity, and HSA carbonylation level were monitored spectrophotometrically. Changes in HSA were followed by fluorescence spectroscopy and native PAG electrophoresis. FA/HSA molar ratio was screened by GC. Together, binding of copper(II) ions and FA to HSA increase the reactivity of Cys34 thiol group (depending on the type of FA), with constant contribution of copper(II) ions of one-third. Carbonylation of FA–HSA–Cu(II) complexes caused a decrease in the Cys34 thiol group content, accompanied by a decrease in the content of HSA-bound copper. The carbonylation level of guanidine groups was not affected by FAs and copper(II) binding. Fluorescent emission spectra of FA–HSA–Cu(II)–MG complexes showed conformational changes in HSA molecule. Although binding of fatty acids and copper ions caused a significant increase in the thiol group reactivity, Cys34 thiol from FA–HSA–Cu(II) complexes reacted with MG in smaller extent than expected, probably as a consequence of conformational changes introduced by carbonylation. Increase in the percentage of reacted-free thiol groups with MG (due to FA and copper binding) may not seem to be very significant, but it is very important in complex biological systems, where catalytic metal is present.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FA:

Fatty acids

Myr:

Myristic acid

Ole:

Oleic acid

Ste:

Stearic acid

FO:

Fish oil fatty acids

HSA:

Human serum albumin

Def HSA:

Defatted HSA

FA–HSA–Cu(II):

Complex HSA with FA and copper(II) ion

HSA–SH:

Cys34 free thiol group of HSA

MG:

Methylglyoxal

HSA–MG:

HSA modified with MG

DTNB:

(5,5′dithiobis-(2-nitrobenzoic acid)

References

  1. Evans TW (2002) Review article: albumin as a drug—biological effects of albumin unrelated to oncotic pressure. Alim Pharmacol Ther 16(Suppl. 5):6–11

    Article  CAS  Google Scholar 

  2. Peters T Jr (1995) All about albumin: biochemistry, genetics, and medical applications, 1st edn. Academic, New York

    Google Scholar 

  3. Larsen MT, Kuhlmann M, Hvam ML, Howard KA (2016) Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787

    Article  CAS  PubMed  Google Scholar 

  5. Anguizola J, Matsuda R, Barnaby OS et al (2013) Review: glycation of human serum albumin. Clin Chim Acta 425:64–76

    Article  CAS  PubMed  Google Scholar 

  6. Sogami M, Nagoka S, Era S, Honda M, Noguchi K (1984) Resolution of human mercapt- and nonmercaptalbumin by high-performance liquid chromatography. Int J Pept Protein Res 24(2):96–103

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe H, Imafuku T, Otagiri M, Maruyama T (2017) Clinical implications associated with the posttranslational modification-induced functional impairment of albumin in oxidative stress related diseases. J Pharm Sci 106(9):2195–2203

    Article  CAS  PubMed  Google Scholar 

  8. Rondeau P, Bourdon E (2010) The glycation of albumin: structural and functional impacts. Biochimie 93:645–658

    Article  CAS  PubMed  Google Scholar 

  9. Rabbani N, Xue M, Thornalley PJ (2016) Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments. Clin Sci 130:1677–1696

    Article  CAS  PubMed  Google Scholar 

  10. Mera K, Takeo K, Izumi M, Maruyama T, Nagai R, Otagiri M (2010) Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin. J Pharm Sci 99:1614–1625

    Article  CAS  PubMed  Google Scholar 

  11. Vetter SW, Indurthi VS (2011) Moderate glycation of serum albumin affects folding, stability, and ligand binding. Clin Chim Acta 412(23–24):2105–2116

    Article  CAS  PubMed  Google Scholar 

  12. Yamato M, Shiba T, Yoshida M, Ide T, Seri N, Kudou W, Kinugawa S, Tsutsui H (2007) Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin. FEBS J 274:3855–3863

    Article  CAS  PubMed  Google Scholar 

  13. Kitamura K, TakegamiI S, Tanaka R, Omran AA, Kitade T (2014) Effect of long-chain fatty acids on the binding of triflupromazine to human serum albumin: a spectrophotometric study. Sci Pharm 82:233–245

    Article  CAS  PubMed  Google Scholar 

  14. Curry S, Brick P, Franks NP (1999) Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochem Biophys Acta 1441:131–140

    CAS  PubMed  Google Scholar 

  15. Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Struct Biol 5(9):827–835

    Article  CAS  PubMed  Google Scholar 

  16. Pavićević ID, Jovanović VB, Takić MM, Penezić AZ, Aćimović JM, LjM Mandić (2014) Fatty acids binding to human serum albumin: changes of reactivity and glycation level of Cysteine-34 free thiol group with methylglyoxal. Chem Biol Interact 224:42–50

    Article  CAS  PubMed  Google Scholar 

  17. Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67(suppl):952S–959S

    Article  CAS  PubMed  Google Scholar 

  18. Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress and human health. Mol Aspects Med 26(4–5):268–298

    Article  CAS  PubMed  Google Scholar 

  19. Bonham M, O’Connor JM, Hannigan BM, Strain JJ (2002) The immune system as aphysiological indicator of marginal copper status? Br J Nutr 87(5):393–403

    Article  CAS  PubMed  Google Scholar 

  20. Rozga M, Sokolowska M, Protas AM, Bal W (2007) Human serum albumin coordinates Cu(II) at its N-terminal binding site with 1 pM affinity, JBIC. J Biol Inorg Chem 12:913–918

    Article  CAS  PubMed  Google Scholar 

  21. Bal W, Sokolowska M, Kurowska E, Faller P (2013) Binding of transition metal ions to albumin: sites, affinities and rates. Biochim Biophys Acta 1830:5444–5455

    Article  CAS  PubMed  Google Scholar 

  22. Ahmed MA, Frye EB, Thorpe SR, Baynes JW (1997) N-(Carboxymethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J 324:565–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR (1996) The advanced glycation end products. N-(carboxymethyl)lysine, is a product of lipid peroxidation and glycoxidation reactions. J Biol Chem 271:9982–9986

    Article  CAS  PubMed  Google Scholar 

  24. Thornalley PJ (2005) Dicarbonyl intermediates in the maillard reaction. Ann N Y Acad Sci 1043:111–117

    Article  CAS  PubMed  Google Scholar 

  25. Rabbani N, Xue M, Thornalley PJ (2016) Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconj J 33:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lapolla A, Flamini R, Dalla Vedova A, Senesi A, Reitano R, Fedele D, Basso E, Seraglia R, Traldi P (2003) Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med 41:1166–1173

    Article  CAS  PubMed  Google Scholar 

  27. Cistola DP, Small DM (1991) Fatty acid distribution in systems modeling the normal and diabetic human circulation. A 13C nuclear magnetic resonance study. J Clin Invest 87:1431–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burgeiro A, Fuhrmann A, Cherian S, Espinoza D, Jarak I, Carvalho RA, Loureiro M, Patrício M, Antunes M, Carvalho E (2016) Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am J Physiol Endocrinol Metab 310(7):E550–E564

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maessen DEM, Stehouwer CDA, Schalkwijk CG (2015) The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci 128:839–861

    Article  CAS  PubMed  Google Scholar 

  30. Penezić AZ, Jovanović VB, Pavićević ID, Aćimović JM, LjM Mandić (2015) HSA carbonylation with methylglyoxal and the binding/release of copper(II) ions. Metallomics 7(10):1431–1438

    Article  CAS  PubMed  Google Scholar 

  31. Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122:1–18

    Article  CAS  PubMed  Google Scholar 

  32. Walter RM, Uriu-Hare JY, Olin KL, Oster MH, Anawalt BD, Critchfield JW, Keen CL (1991) Copper, zinc, manganese, and magnesium status and complications of diabetes mellitus. Diabetes Care 14(11):1050–1056

    Article  PubMed  Google Scholar 

  33. Ford ES (2000) Serum copper concentration and coronary heart disease among US adults. Am J Epidemiol 151(12):1182–1188

    Article  CAS  PubMed  Google Scholar 

  34. Gryzunov YA, Arroyo A, Vigne J-L, Zhao Q, Tyurin VA, Hubel CA, Gandley RE, Vladimirov YA, Taylor RN, Kagan VE (2003) Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper–albumin complexes from antioxidants to prooxidants. Arch Biochem Biophys 413:53–66

    Article  CAS  PubMed  Google Scholar 

  35. Chen RF (1967) Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem 242:173–181

    CAS  Google Scholar 

  36. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  37. Aćimović JM, Jovanović VB, Dimitrijević Srećković V, Penezić Romanjuk AZ, LjM Mandić (2013) Monitoring of the human serum albumin carbonylation level through determination of guanidino group content. Anal Biochem 433:162–167

    Article  CAS  PubMed  Google Scholar 

  38. Petitpas I, Grüne T, Bhattacharya AA, Curry S (2001) Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. J Mol Biol 314:955–960

    Article  CAS  PubMed  Google Scholar 

  39. Bhattacharya AA, GruÈne T, Curry S (2000) Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol 303:721–732

    Article  CAS  PubMed  Google Scholar 

  40. Christodoulou J, Sadler PJ, Tucker A (1995) 1H NMR of albumin in human blood plasma: drug binding and redox reactions at Cys 34. FEBS Lett 376:1–5

    Article  CAS  PubMed  Google Scholar 

  41. Blache D, Bourdon E, Salloignon P, Lucchi G, Ducoroy P, Petit J-M, Verges B, Lagrost L (2015) Glycated albumin with loss of fatty acid binding capacity contributes to enhanced arachidonate oxygenation and platelet hyperactivity: relevance in patients with type 2 diabetes. Diabetes 64(3):960–972

    Article  CAS  PubMed  Google Scholar 

  42. Aćimović JM, Stanimirović BD, LjM Mandić (2009) The role of the thiol group in protein modification with methylglyoxal. J Serb Chem Soc 74(8–9):867–883

    Article  Google Scholar 

  43. Westwood ME, Thornalley PJ (1995) Molecular characteristics of methylglyoxal modified bovine and human serum albumins: comparison with glucose derived advanced glycation endproduct-modified serum albumins. Protein Chem. 14:359–372

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Ministry of Education, Science and Technological Development of Serbia with Grant no. 172049. The authors acknowledge support of the FP7 RegPot Project FCUB ERA GA no. 256716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Z. Penezić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penezić, A.Z., Aćimović, J.M., Pavićević, I.D. et al. The interplay between copper(II), human serum albumin, fatty acids, and carbonylating agent interferes with Cys 34 thiol reactivity and copper binding. J Biol Inorg Chem 24, 61–70 (2019). https://doi.org/10.1007/s00775-018-1628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1628-7

Keywords

Navigation