JBIC Journal of Biological Inorganic Chemistry

, Volume 23, Issue 8, pp 1331–1349 | Cite as

DNA binding, cleavage and cytotoxicity studies of three mononuclear Cu(II) chloro-complexes containing N–S donor Schiff base ligands

  • Sidhali U. Parsekar
  • Joseph Fernandes
  • Arnab Banerjee
  • Om Prakash Chouhan
  • Sumit Biswas
  • Manohar Singh
  • Durga P. Mishra
  • Manjuri KumarEmail author
Original Paper


We report the biological activity of three Cu(II) complexes [Cu(pabt)Cl] (1), [Cu(pma)Cl] (2), and [Cu(pdta)Cl]Cl (3) (pabt = N-(2-mercaptophenyl)-2′-pyridylmethylenimine, pma = N-(2-pyridylmethyl)-2-mercaptoaniline, pdta = 2,2′-di(pyridyl-2-methyleneimine)diphenyl disulfide). 13 display four-line EPR multiplet in solution at RT suggesting that these are mononuclear. DNA-binding studies using spectrophotometric titration of these complexes with calf thymus DNA showed binding through intercalation mode which was found to be consistent with the observation of increased viscosity of DNA and quenching of fluorescence of ethidium bromide bound DNA in the presence of these complexes. All three complexes were found to be efficient in bringing about oxidative and hydrolytic cleavage of DNA. The proposed mechanism of hydrolytic DNA cleavage has been discussed. MTT assay showed remarkable cytotoxicity on cervical cancer HeLa cell line and the IC50 values were 1.27, 4.13, and 3.92 μM for 1, 2 and 3, respectively, as compared to the IC50 value (13 μM) reported for cisplatin in HeLa cells. AO/PI and Annexin-V/PI assay suggest the induction of cell death primarily via apoptotic pathway. Nuclear staining using DAPI was used to assess changes in nuclear morphology during apoptotic cell death. The role of reactive oxygen species (ROS) for induction of apoptotic cell death was studied using H2DCF-DA assay and the result suggests that the generation of ROS by the complexes may be a possible cause for their antiproliferative activity. TUNEL assay showed DNA fragmentation in apoptotic cells. Cell cycle analysis using flow cytometry showed significant increase in the G2/M phase in HeLa cells by the compounds 13.

Graphical abstract

Mononuclear Cu(II) complexes display remarkable cytotoxicity against cervical cancer HeLa cell line. The generation of ROS by the complexes may be a cause of their antiproliferative activity. Fluorescent images from DAPI staining assay revealed that the cells undergoing apoptosis displayed typical features like cell shrinkage, membrane blebbing, chromatin condensation and nuclear fragmentation. TUNEL assay showed DNA fragmentation in apoptotic cells.


Cu(II) complexes DNA binding and cleavage MTT assay TUNEL assay Cytotoxicity Anticancer activity 



We thank SAIF, IIT-Madras for EPR facilities and SAIF, IIT-Bombay for recording ESI MS for the compounds 1 and 3 with Varian Inc., USA Liquid Chromatograph Mass Spectrometer Model 410 Prostar Binary LC with 500 MS IT PDA Detectors. M.K. thanks Ms. Neha Saran and Prof. P. Bhavana, Department of Chemistry, BITS-Pilani K. K. Birla Goa Campus for help with the electrochemical studies.

Supplementary material

775_2018_1620_MOESM1_ESM.pdf (4.7 mb)
Supplementary material Fig. S1 ESI-MS spectrum of 1, 2 and 3 in CH3CN. Fig. S2 X-band RT solution EPR spectra of 1-3. Fig. S3 Cyclic voltammograms for 1-3 in CH3CN. Fig. S4 Effect of increasing amount of 1-3 on the relative viscosity of CT-DNA (100 μM) in 10 mM Tris.HCl buffer (pH 7.4) at room temperature. Fig. S5 ROS detection in HeLa cells treated with H2O2 (final concentration of 180 µM) as a positive control. Fig. S6 Detection of apoptotic DNA fragmentation by TUNEL assay using Alexa Fluor® picolyl azide dye (PDF 4793 kb)


  1. 1.
    Todd RC, Lippard SJ (2009) Metallomics 1:280–291CrossRefGoogle Scholar
  2. 2.
    Barone G, Terenzi A, Lauria A, Almerico AM, Leal JM, Busto N, García B (2013) Coord Chem Rev 257:2848–2862 (And references therein) CrossRefGoogle Scholar
  3. 3.
    Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Chem Rev 114:815–862CrossRefGoogle Scholar
  4. 4.
    Zhang CX, Lippard SJ (2003) Currn Opin Chem Biol 7:481–489CrossRefGoogle Scholar
  5. 5.
    Nagababu P, Barui AK, Thulasiram B, Shobha Devi C, Satyanarayana S, Patra CR, Sreedhar B (2015) J Med Chem 58:5226–5241CrossRefGoogle Scholar
  6. 6.
    Chauhan M, Banerjee K, Arjmand F (2007) Inorg Chem 46:3072–3082CrossRefGoogle Scholar
  7. 7.
    Basu U, Khan I, Hussain A, Kondaiah P, Chakravarty AR (2012) Angew Chem Int Ed 51:2658–2661CrossRefGoogle Scholar
  8. 8.
    Basu U, Khan I, Koley D, Saha S, Kondaiah P, Chakravarty AR (2012) J Inorg Biochem 116:77–87CrossRefGoogle Scholar
  9. 9.
    Vijayalakshmi R, Kanthimathi M, Parthasarathi R, Nair BU (2006) Bioorg Med Chem 14:3300–3306CrossRefGoogle Scholar
  10. 10.
    Walker MG, Gonzalez V, Chekmeneva E, Thomas JA (2012) Angew Chem Int Ed 51:12107–12110CrossRefGoogle Scholar
  11. 11.
    Fabbro C, Ali-Boucetta H, Ros TD, Kostarelos K, Bianco A, Prato M (2012) Chem Commun 48:3911–3926CrossRefGoogle Scholar
  12. 12.
    Farrer NJ, Salassa L, Sadler PJ (2009) Dalton Trans 10690–10701Google Scholar
  13. 13.
    Rajalakshmi S, Kiran MS, Nair BU (2014) Eur J Med Chem 80:393–406CrossRefGoogle Scholar
  14. 14.
    Rajalakshmi S, Weyherm¨uller T, Dinesh M, Nair BU (2012) J Inorg Biochem 117:48–59CrossRefGoogle Scholar
  15. 15.
    Goswami TK, Gadadhar S, Roy M, Nethaji M, Karande AA, Chakravarty AR (2012) Organometallics 31:3010–3021CrossRefGoogle Scholar
  16. 16.
    Goswami TK, Chakravarthi BVSK, Roy M, Karande AA, Chakravarty AR (2011) Inorg Chem 50:8452–8464CrossRefGoogle Scholar
  17. 17.
    Devereux M, Shea DO, Kellett A, McCann M, Walsh M, Egan D, Deegan C, Kedziora K, Rosair G, Muller-Bunz H (2007) J Inorg Biochem 101:881–892CrossRefGoogle Scholar
  18. 18.
    O’Connor M, Kellett A, McCann M, Rosair G, McNamara M, Howe O, Creaven BS, McClean S, Foltyn-Arfa Kia A, O’Shea D, Devereux M (2012) J Med Chem 55:1957–1968CrossRefGoogle Scholar
  19. 19.
    Tardio S, Basanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R, Marchio L (2011) J Am Chem Soc 133:6235–6242CrossRefGoogle Scholar
  20. 20.
    Dey D, Kaur G, Ranjani A, Gayathri L, Chakraborty P, Adhikary J, Pasan J, Dhanasekaran D, Choudhury AR, Akbarsha MA, Kole N, Biswas B (2014) Eur J Inorg Chem 3350–3358Google Scholar
  21. 21.
    Adak P, Ghosh B, Bauza A, Frontera A, Blake AJ, Corbella CM, Das- Mukhopadhyay C, Chattopadhyay SK (2016) RSC Adv 6:86851–86861CrossRefGoogle Scholar
  22. 22.
    Festa RA, Thiele DJ (2011) Curr Biol 21:877–883CrossRefGoogle Scholar
  23. 23.
    Jamieson ER, Lippard SJ (1999) Chem Rev 99(9):2467–2498CrossRefGoogle Scholar
  24. 24.
    Johnstone TC, Park GY, Lippard SJ (2014) Anticancer Res 34(1):471–476PubMedPubMedCentralGoogle Scholar
  25. 25.
    Denoyer D, Masaldan S, La Fontaine S, Cater MA (2015) Metallomics 7:1459–1476CrossRefGoogle Scholar
  26. 26.
    Parveen S, Tabassum S, Arjmand F (2017) RSC Adv 7:6587–6597CrossRefGoogle Scholar
  27. 27.
    Liu J, Zhang T, Lu T, Qu L, Zhou H, Zhang Q, Ji L (2002) J Inorg Biochem 91:269–276CrossRefGoogle Scholar
  28. 28.
    Selvakumar B, Rajendiran V, Uma Maheswari P, Stoeckli-Evans H, Palaniandavar M (2006) J Inorg Biochem 100(3):316–330CrossRefGoogle Scholar
  29. 29.
    Mal SK, Mitra M, Kaur G, Manikandamathavan VM, Kiran MS, Roy Choudhury A, Unni Nair B, Ghosh R (2014) RSC Adv 4:61337–61342CrossRefGoogle Scholar
  30. 30.
    Saswati, Chakroborty A, Dash SP, Panda AK, Acharyya R, Biswas A, Mukhopadhyay S, Bhutia SK, Crochet A, Patil YP, Nethaji M, Dinda R (2015) Dalton Trans 44:6140–6157Google Scholar
  31. 31.
    Kumaravel G, Utthra PP, Raman N (2018) Bioorg Chem 77:269–279CrossRefGoogle Scholar
  32. 32.
    Burstyn JN, Deal KA (1993) Inorg Chem 32:3585–3586CrossRefGoogle Scholar
  33. 33.
    Deal KA, Hengge AC, Burstyn JN (1996) J Am Chem Soc 118:1713–1718CrossRefGoogle Scholar
  34. 34.
    Itoh T, Hisada H, Sumiya T, Hosono M, Usui Y, Fujii Y (1997) Chem Commun 677–678Google Scholar
  35. 35.
    Sissi C, Mancin F, Gatos M, Palumbo M, Tecilla P, Tonellato U (2005) Inorg Chem 44(7):2310–2317CrossRefGoogle Scholar
  36. 36.
    Wang J, Xia Q, Zheng X, Chen H, Chao H, Mao Z, Ji L (2010) Dalton Trans 39:2128–2136CrossRefGoogle Scholar
  37. 37.
    Lu J, Sun Q, Li JL, Jiang L, Gu W, Liu X, Tian JL, Yan SP (2014) J Inorg Biochem 137:46–56CrossRefGoogle Scholar
  38. 38.
    Li F, Xie J, Feng F (2015) New J Chem 39:5654–5660CrossRefGoogle Scholar
  39. 39.
    Reddy PAN, Nethaji M, Chakravarty AR (2004) Eur J Inorg Chem 1440–1446Google Scholar
  40. 40.
    Dhar S, Reddy PAN, Chakravarty AR (2004) Dalton Trans 697–698Google Scholar
  41. 41.
    Ramakrishnan S, Rajendiran V, Palaniandavar M, Periasamy VS, Srinag BS, Krishnamurthy H, Akbarsha MA (2009) Inorg Chem 48:1309–1322CrossRefGoogle Scholar
  42. 42.
    Reddy PR, Silpa A (2011) Polyhedron 30:565–572CrossRefGoogle Scholar
  43. 43.
    Reddy PR, Silpa A (2011) Chem Biodivers 8:1245–1265CrossRefGoogle Scholar
  44. 44.
    Koley MK, Chouhan OP, Biswas S, Fernandes J, Banerjee A, Chattopadhyay A, Varghese B, Manoharan PT, Koley AP (2017) Inorg Chim Acta 456:179–198CrossRefGoogle Scholar
  45. 45.
    Koley MK, Duraipandy N, Kiran MS, Varghese B, Manoharan PT, Koley AP (2017) Inorg Chim Acta 466:538–550CrossRefGoogle Scholar
  46. 46.
    Koley MK, Parsekar SU, Duraipandy N, Kiran MS, Varghese B, Manoharan PT, Koley AP (2018) Inorg Chim Acta 478:211–221CrossRefGoogle Scholar
  47. 47.
    Rastogi N, Duggal S, Singh SK, Porwal K, Srivastava VK, Maurya R, Bhatt ML, Mishra DP (2015) Oncotarget 6:43310–43325CrossRefGoogle Scholar
  48. 48.
    Lindoy LF, Livingstone SE (1968) Inorg Chim Acta 2:166–168CrossRefGoogle Scholar
  49. 49.
    Lindoy LF, Livingstone SE (1968) Inorg Chem 7:1149–1154CrossRefGoogle Scholar
  50. 50.
    Livingstone SE, Nolan JD (1973) Aust J Chem 26:961–970CrossRefGoogle Scholar
  51. 51.
    Geary WJ (1971) Coord Chem Rev 7:81–122CrossRefGoogle Scholar
  52. 52.
    Kumar SM, Kesavan MP, Vinoth Kumar GG, Sankarganesh M, Chakkaravarthi G, Rajagopal G, Rajesh J (2018) J Mol Struct 1153:1–11CrossRefGoogle Scholar
  53. 53.
    Kesavan MP, Vinoth Kumar GG, Dhaveethu Raja J, Anitha K, Karthikeyan S, Rajesh J (2017) J Photochem Photobiol B Biol 20–28Google Scholar
  54. 54.
    Rajesh J, Kesavan MP, Ayyanaar S, Karthikeyan K, Rajagopal G, Athappan P (2017) Appl Organomet Chem 31:e3868CrossRefGoogle Scholar
  55. 55.
    Gubendran A, Vinoth Kumar GG, Kesavan MP, Rajagopal G, Athappan P, Rajesh J (2018) Appl Organomet Chem 32:e4128CrossRefGoogle Scholar
  56. 56.
    Wilson WD, Ratmeyer L, Zhao M, Strekowski L, Boykin D (1993) Biochemistry 32:4098–4104CrossRefGoogle Scholar
  57. 57.
    Rajendiran V, Karthik R, Palaniandavar M, Stoeckli-Evans H, Periasamy VS, Akbarsha MA, Srinag BS, Krishnamurthy H (2007) Inorg Chem 46:8208–8221CrossRefGoogle Scholar
  58. 58.
    Massoud SS, Perkins RS, Louka FR, Xu W, Roux AL, Dutercq Q, Fischer RC, Mautner FA, Handa M, Hiraoka Y, Kreft GL, Bortolotto T, Terenzi H (2014) Dalton Trans 43:10086–10103CrossRefGoogle Scholar
  59. 59.
    Tardito S, Isella C, Medico E, Marchio L, Bevilacqua E, Hatzoglou M, Bussolati O, Franchi-Gazzola R (2009) J Biol Chem 284:24306–24319CrossRefGoogle Scholar
  60. 60.
    Ahmed M, Jamil K (2011) Biol Med 3:60–71Google Scholar
  61. 61.
    Zeng L, Chen Y, Liu J, Huang H, Guan R, Ji L, Chao H (2016) Sci Rep 6:19449CrossRefGoogle Scholar
  62. 62.
    Qin J, Shen W, Chen Z, Zhao L, Qin Q, Yu Y, Liang H (2017) Sci Rep 7:46056CrossRefGoogle Scholar
  63. 63.
    Usman M, Arjmand F, Khan RA, Alsalme A, Ahmad M, Tabassum S (2017) RSC Adv 7:47920–47932CrossRefGoogle Scholar
  64. 64.
    D’Sousa Costa CO, Araujo Neto JH, Baliza IRS, Dias RB, Valverde LF, Vidal MTA, Sales CBS, Rocha CAG, Moreira DRM, Soares MBP, Batista AA, Bezerra DP (2017) Oncotarget 8:104367–104392PubMedPubMedCentralGoogle Scholar
  65. 65.
    Recio Despaigne AA, Da Silva JG, da Costa PR, dos Santos RG, Beraldo H (2014) Molecules 19:17202–17220CrossRefGoogle Scholar
  66. 66.
    Lu Y, Shen T, Yang H, Gu W (2016) Int J Mol Sci 17:775–785CrossRefGoogle Scholar
  67. 67.
    Yu H, Yong Y, Li Q, Ma T, Xu J, Zhu T, Xie J, Zhu W, Cao Z, Dong K, Huang J, Jia L (2016) Chem Biol Drug Des 87:398–408CrossRefGoogle Scholar
  68. 68.
    Lallana E, Riguera R, Fernandez-Megia E (2011) Angew Chem Int Ed 50:8794–8804CrossRefGoogle Scholar
  69. 69.
    Senderowicz AM, Sausville EA (2000) J Natl Cancer Inst 92:376–387CrossRefGoogle Scholar
  70. 70.
    Jackson JR, Gilmartin A, Imburgia C, Winkler JD, Marshall LA, Roshak A (2000) Can Res 60:566–572Google Scholar
  71. 71.
    DiPaola RS (2002) Clin Cancer Res 8:3512–3519Google Scholar
  72. 72.
    Tyagi AK, Singh RP, Agarwal C, Chan DC, Agarwal R (2002) Clin Cancer Res 8:3512–3519PubMedGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  • Sidhali U. Parsekar
    • 1
  • Joseph Fernandes
    • 2
  • Arnab Banerjee
    • 2
  • Om Prakash Chouhan
    • 2
  • Sumit Biswas
    • 2
  • Manohar Singh
    • 3
  • Durga P. Mishra
    • 3
  • Manjuri Kumar
    • 1
    Email author
  1. 1.Department of Chemical EngineeringBirla Institute of Technology and Science-PilaniGoaIndia
  2. 2.Department of Biological SciencesBirla Institute of Technology and Science-PilaniGoaIndia
  3. 3.Cell Death Research Laboratory, Endocrinology DivisionCSIR-Central Drug Research InstituteLucknowIndia

Personalised recommendations