Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 23, Issue 7, pp 1037–1047 | Cite as

Structure and function of the lanthanide-dependent methanol dehydrogenase XoxF from the methanotroph Methylomicrobium buryatense 5GB1C

  • Yue Wen Deng
  • Soo Y. Ro
  • Amy C. RosenzweigEmail author
Original Paper
Part of the following topical collections:
  1. Alison Butler: Papers in Celebration of Her 2018 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry

Abstract

In methylotrophic bacteria, which use one-carbon (C1) compounds as a carbon source, methanol is oxidized by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH) enzymes. Methylotrophic genomes generally encode two distinct MDHs, MxaF and XoxF. MxaF is a well-studied, calcium-dependent heterotetrameric enzyme whereas XoxF is a lanthanide-dependent homodimer. Recent studies suggest that XoxFs are likely the functional MDHs in many environments. In methanotrophs, methylotrophs that utilize methane, interactions between particulate methane monooxygenase (pMMO) and MxaF have been detected. To investigate the possibility of interactions between pMMO and XoxF, XoxF was isolated from the methanotroph Methylomicrobium buryatense 5GB1C (5G-XoxF). Purified 5G-XoxF exhibits a specific activity of 0.16 μmol DCPIP reduced min−1 mg−1. The 1.85 Å resolution crystal structure reveals a La(III) ion in the active site, in contrast to the calcium ion in MxaF. The overall fold is similar to other MDH structures, but 5G-XoxF is a monomer in solution. An interaction between 5G-XoxF and its cognate pMMO was detected by biolayer interferometry, with a KD value of 50 ± 17 μM. These results suggest an alternative model of MDH-pMMO association, in which a XoxF monomer may bind to pMMO, and underscore the potential importance of lanthanide-dependent MDHs in biological methane oxidation.

Keywords

Lanthanide Methanol dehydrogenase Methanotroph XoxF Particulate methane monooxygenase 

Abbreviations

ICP-MS

Inductively coupled plasma mass spectrometry

ICP-OES

Inductively coupled plasma optical emission spectrometry

Mc.

Methylococcus

MDH

Methanol dehydrogenase

Mm.

Methylomicrobium

MMO

Methane monooxygenase

pMMO

Particulate methane monooxygenase

PQQ

Pyrroloquinoline quinone

REE

Rare earth element

SEC-MALS

Size exclusion chromatography with multi-angle light scattering

Notes

Acknowledgements

This work was supported by NIH Grant GM118035 (A.C.R.) and a grant from the Undergraduate Research Grant Program which is administered by Northwestern University’s Office of Undergraduate Research. The authors thank Dr. Mary Lidstrom at Washington University for providing Mm. buryatense 5GB1C cultures and Theint Aung from the Northwestern Keck Biophysics Facility for assistance with BLItz instrumentation, data collection, and data interpretation. This work used the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817). Data were collected at the LS-CAT beamlines 21-ID-D/F/G. Use of GM/CA has been funded in whole or in part with Federal funds from the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006). The GM/CA Eiger 16 M detector at beamline 23ID-B was funded by an NIH-Office of Research Infrastructure Programs, High-End Instrumentation Grant (1S10OD012289-01A1).

Supplementary material

775_2018_1604_MOESM1_ESM.pdf (3.2 mb)
Supplementary material 1 (PDF 3261 kb)

References

  1. 1.
    Chistoserdova L, Kalyuzhnaya MG (2018) Trends Microbiol. 26:703–714.  https://doi.org/10.1016/j.tim.2018.01.011 CrossRefPubMedGoogle Scholar
  2. 2.
    Chistoserdova L, Lidstrom ME (2013) In: Rosenberg E, DeLong EF, Lory S, Stakebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin Heidelberg, pp 267–285CrossRefGoogle Scholar
  3. 3.
    Strong PJ, Xie S, Clarke WP (2015) Environ Sci Technol 49:4001–4018CrossRefGoogle Scholar
  4. 4.
    Pfeifenschneider J, Brautaset T, Wendisch VF (2017) Biofuels Bioprod Bioref 11:719–731CrossRefGoogle Scholar
  5. 5.
    Keltjens JT, Pol A, Reimann J (2014) Op den Camp HJM. Appl Microbiol Biotechnol 98:6163–6183CrossRefGoogle Scholar
  6. 6.
    Anthony C, Williams P (2003) Biochim Biophys Acta 1647:18–23CrossRefGoogle Scholar
  7. 7.
    Skovran E, Martinez-Gomez NC (2015) Science 348:862–863CrossRefGoogle Scholar
  8. 8.
    Chistoserdova L (2011) Environ Microbiol 13:2603–2622CrossRefGoogle Scholar
  9. 9.
    Hibi Y, Asai K, Arafuka H, Hamajima M, Iwama T, Kawai K (2011) J Biosci Bioeng 111:547–549CrossRefGoogle Scholar
  10. 10.
    Fitriyanto NA, Fushimi M, Matsunaga M, Pertiwiningrum A, Iwama T, Kawai K (2011) J Biosci Bioeng 111:613–617CrossRefGoogle Scholar
  11. 11.
    Nakagawa T, Mitsui R, Tani A, Sasa K, Tashiro S, Iwama T, Hayakawa T, Kawai K (2012) PLoS One 7:e50480CrossRefGoogle Scholar
  12. 12.
    Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM (2014) Op den Camp HJM. Environ Microbiol 16:255–264CrossRefGoogle Scholar
  13. 13.
    Masuda S, Suzuki Y, Fujitani Y, Mitsui R, Nakagawa T, Shintani M, Tani A (2018) mSphere 3:e00462–17CrossRefGoogle Scholar
  14. 14.
    Haque MFU, Kalidass B, Bandow N, Turpin EA, DiSpirito AA, Semrau JD (2015) Appl Environ Microbiol 81:7546–7552CrossRefGoogle Scholar
  15. 15.
    Chu F, Lidstrom ME (2016) J Bacteriol 198:1317–1325CrossRefGoogle Scholar
  16. 16.
    Vu HN, Subuyuj GA, Vijayakumar S, Good NM, Martinez-Gomez NC, Skovran E (2016) J Bacteriol 198:1250–1259CrossRefGoogle Scholar
  17. 17.
    Bentlin FRS, Pozebon D (2010) J Braz Chem Soc 21:627–634CrossRefGoogle Scholar
  18. 18.
    Jahn B, Pol A, Lumpe H, Barends TRM, Dietl A, Hogendoorn C, Op den Camp HJM, Daumann LJ (2018) ChemBioChem 19:1–8CrossRefGoogle Scholar
  19. 19.
    Hanson RE, Hanson TE (1996) Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  20. 20.
    Sirajuddin S, Rosenzweig AC (2015) Biochemistry 54:2283–2294CrossRefGoogle Scholar
  21. 21.
    Wadzinski AM, Ribbons DW (1975) J Bacteriol 122:1364–1374PubMedPubMedCentralGoogle Scholar
  22. 22.
    Fassel TA, Buchholz LA, Collins MLP, Remsen CC (1992) Appl Environ Microbiol 58:2302–2307PubMedPubMedCentralGoogle Scholar
  23. 23.
    Brantner C, Remsen C, Owen H, Buchholz L, Collins M (2002) Arch Microbiol 178:59–64CrossRefGoogle Scholar
  24. 24.
    Kitmitto A, Myronova N, Basu P, Dalton H (2005) Biochemistry 44:10954–10965CrossRefGoogle Scholar
  25. 25.
    Puri AW, Owen S, Chu F, Chavkin T, Beck DAC, Kalyuzhnaya MG, Lidstrom ME (2015) Appl Environ Microbiol 81:1775–1781CrossRefGoogle Scholar
  26. 26.
    Culpepper MA, Rosenzweig AC (2014) Biochemistry 53:6211–6219CrossRefGoogle Scholar
  27. 27.
    Myronova N, Kitmitto A, Collins RF, Miyaji A, Dalton H (2006) Biochemistry 45:11905–11914CrossRefGoogle Scholar
  28. 28.
    de la Torre A, Metivier A, Chu F, Laurens LML, Beck DAC, Pienkos PT, Lidstrom ME, Kalyuzhnaya MG (2015) Microb Cell Fact 14:1–15CrossRefGoogle Scholar
  29. 29.
    Choi D-W, Kunz RC, Boyd ES, Semrau JD, Antholine WE, Han JI, Zahn JA, Boyd JM, de la Mora AM, DiSpirito AA (2003) J Bacteriol 185:5755–5764CrossRefGoogle Scholar
  30. 30.
    Day DJ, Anthony C (1990) Methods Enzymol 188:210–216CrossRefGoogle Scholar
  31. 31.
    Ro SY, Ross MO, Deng Y, Batelu S, Lawton TJ, Hurley JD, Stemmler TL, Hoffman BM, Rosenzweig AC (2018) J Biol Chem 293:10457–10465.  https://doi.org/10.1074/jbc.RA118.003348 CrossRefPubMedGoogle Scholar
  32. 32.
    Otwinowski Z, Minor W (1997) Methods Enzymol 276:1–20Google Scholar
  33. 33.
    McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Cryst 40:658–674CrossRefGoogle Scholar
  34. 34.
    Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Acta Crystallogr Sect D Biol Crystallogr 66:486–501CrossRefGoogle Scholar
  35. 35.
    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) Acta Crystallogr Sect D Biol Crystallogr 66:213–221CrossRefGoogle Scholar
  36. 36.
    Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2009) Acta Crystallogr Sect D Biol Crystallogr 66:12–21CrossRefGoogle Scholar
  37. 37.
    Laskowski RA (2000) Nucleic Acids Res 29:221–222CrossRefGoogle Scholar
  38. 38.
    Wu ML, Wessels HJCT, Pol A, Op den Camp HJM, Jetten MSM, van Niftrik L, Keltjens JT (2015) Appl Environ Microbiol 81:1442–1451CrossRefGoogle Scholar
  39. 39.
    Schmidt S, Christen P, Kiefer P, Vorholt JA (2010) Microbiology 156:2575–2586CrossRefGoogle Scholar
  40. 40.
    Basu P, Katterle B, Andersson KK, Dalton H (2003) Biochem J 369:417–427CrossRefGoogle Scholar
  41. 41.
    Anthony C (2004) Arch Biochem Biophys 428:2–9CrossRefGoogle Scholar
  42. 42.
    Nojiri M, Hira D, Yamaguchi K, Okajima T, Tanizawa K, Suzuki S (2006) Biochemistry 45:3481–3492CrossRefGoogle Scholar
  43. 43.
    Chan HTC, Anthony C (1991) Biochem J 280:139–146CrossRefGoogle Scholar
  44. 44.
    Cox JM, Day DJ, Anthony C (1992) Biochim Biophys Acta 1119:97–106CrossRefGoogle Scholar
  45. 45.
    Van Spanning RJM, Wansell CW, De Boer T, Hazelaar MJ, Anazawa H, Harms N, Oltmann LF, Stouthamer AH (1991) J Bacteriol 173:6948–6961CrossRefGoogle Scholar
  46. 46.
    Anthony C (1992) Biochim Biophys Acta 1099:1–15CrossRefGoogle Scholar
  47. 47.
    Choi JM, Cao T-P, Kim SW, Lee KH, Lee SH (2017) Proteins Struct Funct Bioinf 85:1379–1386CrossRefGoogle Scholar
  48. 48.
    Skovran E, Palmer AD, Rountree AM, Good NM, Lidstrom ME (2011) J Bacteriol 193:6032–6038CrossRefGoogle Scholar
  49. 49.
    Page MD, Anthony C (1986) J Gen Microb 132:1553–1563Google Scholar
  50. 50.
    Goodwin MG, Anthony C (1996) Biochem J 318:673–679CrossRefGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  • Yue Wen Deng
    • 1
    • 2
  • Soo Y. Ro
    • 1
    • 2
  • Amy C. Rosenzweig
    • 1
    • 2
    Email author
  1. 1.Department of Molecular BiosciencesNorthwestern UniversityEvanstonUSA
  2. 2.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations