Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 23, Issue 7, pp 1165–1183 | Cite as

Efficient copper-based DNA cleavers from carboxylate benzimidazole ligands

  • Víctor A. Barrera-Guzmán
  • Edgar O. Rodríguez-Hernández
  • Naytzé Ortíz-Pastrana
  • Ricardo Domínguez-González
  • Ana B. Caballero
  • Patrick GamezEmail author
  • Norah Barba-BehrensEmail author
Original Paper
Part of the following topical collections:
  1. Alison Butler: Papers in Celebration of Her 2018 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry

Abstract

Four copper(II) coordination compounds from 2-benzimidazole propionic acid (Hbzpr) and 4-(benzimidazol-2-yl)-3-thiobutanoic acid (Hbztb) were synthesized and fully characterized by elemental analyses, electronic spectroscopy, FT-IR and mass spectrometry. The molecular structure for the four complexes was confirmed by single-crystal X-ray crystallography. The DNA-interacting properties of the two trinuclear and two mononuclear compounds were investigated using different spectroscopic techniques including absorption titration experiments, fluorescence spectroscopy and circular dichroism spectroscopy. Trinuclear [Cu3(bzpr)4(H2O)2](NO3)2·3H2O·CH3OH (2) and [Cu3(bzpr)4Cl2]·3H2O (3) bind to DNA through non-intercalative interactions, while for mononuclear [Cu(bzpr)2(H2O)]·2H2O (1) and [Cu(bztb)2]·2H2O (4), at minor concentrations in relation to the DNA, a groove binding interaction is favored, while at higher concentrations an intercalative mode is preferred. The nuclease properties of all complexes were studied by gel electrophoresis, which showed that they were able to cleave supercoiled plasmid DNA (form I) to the nicked form (form II). Compound 4 is even capable of generating linear form III (resulting from double-strand cleavage). The proposed mechanism of action involves an oxidative pathway (Fenton-type reaction), which produces harmful reactive species, like hydroxyl radicals.

Graphical abstract

Keywords

Copper(II) complexes 2-Carboxylate benzimidazoles ct-DNA pBr322 DNA DNA-cleaving properties 

Notes

Acknowledgements

The financial support from CONACYT, grant CB2012-178851 and DGAPA-UNAM for grant IN224516 is acknowledged. V.A.B.-G. thanks a CONACYT scholarship. P.G. acknowledges the financial support from the Ministerio de Ciencia, Innovación y Universidades (projects CTQ2015-70371-REDT and CTQ2017-88446-R AEI/FEDER, UE). We thank P. Fierro for technical support.

Supplementary material

775_2018_1598_MOESM1_ESM.docx (262 kb)
Supplementary material 1 (DOCX 262 kb)

References

  1. 1.
    Tullius TD (1989) Metal-DNA chemistry. ACS Symposium Series, vol 402. American Chemical Society, Washington DCCrossRefGoogle Scholar
  2. 2.
    Loehrer PJ, Einhorn LH (1984) Ann Intern Med 100:704–713CrossRefGoogle Scholar
  3. 3.
    Lippert B (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. VHCA & Wiley-VCH, ZurichCrossRefGoogle Scholar
  4. 4.
    Cuello-Garibo JA, James CC, Siegler MA, Bonnet S (2017) Chem Sq 1:2CrossRefGoogle Scholar
  5. 5.
    Stern BR (2010) J Toxicol Environ Health Part A 73:114–127CrossRefGoogle Scholar
  6. 6.
    Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. Mill Valley, CaliforniaGoogle Scholar
  7. 7.
    Jagadeesh M, Kalangi SK, Krishna LS, Reddy AV (2014) Spectrochim Acta, Part A 118:552–556CrossRefGoogle Scholar
  8. 8.
    Sayen S, Carlier A, Tarpin M, Guillon E (2013) J Inorg Biochem 120:39–43CrossRefGoogle Scholar
  9. 9.
    Duff B, Thangella VR, Creaven BS, Walsh M, Egan DA (2012) Eur J Pharmacol 689:45–55CrossRefGoogle Scholar
  10. 10.
    Ali I, Wani WA, Saleem K, Hseih M-F (2013) Polyhedron 56:134–143CrossRefGoogle Scholar
  11. 11.
    Li G-Y, Du K-J, Wang J-Q, Liang J-W, Kou J-F, Hou X-J, Ji L-N, Chao H (2013) J Inorg Biochem 119:43–53CrossRefGoogle Scholar
  12. 12.
    Silveira VC, Benezra H, Luz JS, Georg RC, Oliveira CC, Ferreira AMC (2011) J Inorg Biochem 105:1692–1703CrossRefGoogle Scholar
  13. 13.
    Patel MN, Dosi PA, Bhatt BS, Thakkar VR (2011) Spectrochim Acta Part A 78:763–770CrossRefGoogle Scholar
  14. 14.
    Kellett A, Howe O, Connor MO, McCann M, Creaven BS, McClean S, Kia AF-A, Casey A, Devereux M (2012) Free Radical Biol Med 53:564–576CrossRefGoogle Scholar
  15. 15.
    Kashanian S, Khodaei MM, Roshanfekr H, Shahabadi N, Mansouri G (2012) Spectrochim Acta Part A 86:351–359CrossRefGoogle Scholar
  16. 16.
    Grau J, Renau C, Caballero AB, Caubet A, Pockaj M, Lorenzo J, Gamez P (2018) Dalton Trans 47:4902–4908CrossRefGoogle Scholar
  17. 17.
    Schreiber JP, Deune M (1969) Biopolymers 8:139–152CrossRefGoogle Scholar
  18. 18.
    Chikira M, Inue M, Negane R, Harada W, Shindo H, Antholine WE (2000) J Inorg Biochem 78:243–249CrossRefGoogle Scholar
  19. 19.
    Morrow JR, Iranzo O (2004) Curr Opin Chem Biol 8:192–200CrossRefGoogle Scholar
  20. 20.
    Erxleben A Interactions of copper complexes with nucleic acidsGoogle Scholar
  21. 21.
    Spingler B, Da Pieve C (2005) Dalton Trans 1637–1643Google Scholar
  22. 22.
    Medina-Molner A, Rohner M, Pandiarajan D, Spingler B (2015) Dalton Trans 44:3664–3672CrossRefGoogle Scholar
  23. 23.
    Harada W, Nojima T, Shibayama A, Ueda H, Sindo H, Chikira M (1996) J Inorg Biochem 64:273–285CrossRefGoogle Scholar
  24. 24.
    Negane R, Chikira M, Oumi M, Shindo H, Antholine WE (2000) J Inorg Biochem 78:243–249CrossRefGoogle Scholar
  25. 25.
    Li D-D, Tian J-L, Gu W, Liu X, Zeng H-H, Yan S-P (2011) J Inorg Biochem 105:894–901CrossRefGoogle Scholar
  26. 26.
    Suntharalingam K, White AJP, Vilar R (2010) Inorg Chem 49:8371–8380CrossRefGoogle Scholar
  27. 27.
    Suntharalingam K, Hunt DJ, Duarte AA, White AJP, Mann DJ, Vilar R (2012) Chem Eur J 41:4955–4965Google Scholar
  28. 28.
    Skinnerm WA, Schelstraete MGM, Baker BR (1959) J Org Chem 24:1827CrossRefGoogle Scholar
  29. 29.
    Biron KK (2006) Antivir Res 71:154–163CrossRefGoogle Scholar
  30. 30.
    Middleton T, Lim HB, Montgomery D, Rockway T, Tang H, Cheng X, Lu L, Mo H, Kohlbrenner WE, Molla A, Kati WM (2004) Antivir Res 64:35–45CrossRefGoogle Scholar
  31. 31.
    Labanauskas L, Brukštus A, Udre˙ naite˙ E, Gaidelis P, Bucˇinskaite˙ V (2003) Chemija (Vilnius) 14:49Google Scholar
  32. 32.
    Sari H, Covington AK (2005) J Chem Eng Data 50:1425–1429CrossRefGoogle Scholar
  33. 33.
    Meaney M, Allister J, McKinstry B, McLaughlin K, Brennan GP, Forbes AB, Fairweather I (2007) Parasitol Res 100:1091–1104CrossRefGoogle Scholar
  34. 34.
    Mirskova AN, Levkovskaya GG, Mirskov RG, Voronkov MG (2008) Russ J Org Chem 44:1478–1485CrossRefGoogle Scholar
  35. 35.
    Luneau D, Rey P (2005) Coord Chem Rev 249:2591–2611CrossRefGoogle Scholar
  36. 36.
    Kabatc J, Jurek K (2012) Polymer 53:1973–1980CrossRefGoogle Scholar
  37. 37.
    Yoe F, Flores-Álamo M, Morales F, Escudero R, Cortés-Hernández H, Castro M, Barba-Behrens N (2014) Inorg Chim Acta 423:36–45CrossRefGoogle Scholar
  38. 38.
    Sheldrick GM (2015) Acta Cryst. A71:3–8Google Scholar
  39. 39.
    Hübschle CB, Sheldrick GM, Dittrich B (2011) J Appl Crystallogr 44:1281–1284CrossRefGoogle Scholar
  40. 40.
    Spek AL (2015) Acta Cryst. C71:9–18Google Scholar
  41. 41.
    Reichmann MF, Rice SA, Thomas CA, Doty P (1954) J Am Chem Soc 76:3047–3053CrossRefGoogle Scholar
  42. 42.
    Wolfe A, Shimer GHJ, Meehan T (1987) Biochemistry 26:6392–6396CrossRefGoogle Scholar
  43. 43.
    Lakowicz JR, Weber G (1973) Biochemistry 12(21):4161–4170CrossRefGoogle Scholar
  44. 44.
    Shubsda MF, Goodisman J, Dabrowiak JC (1997) J Biochem Biophys Methods 34:73–79CrossRefGoogle Scholar
  45. 45.
    Patel MN, Dosi PA, Bhatt BS (2010) Polyhedron 29:3238–3245CrossRefGoogle Scholar
  46. 46.
    Lever ABP (1968) J Chem Ed 45:711–712CrossRefGoogle Scholar
  47. 47.
    Valderrama-Negrón AC, Alves WA, Cruz ÁS, Rogero SO, de Oliveira Silva D (2011) Inorg Chim Acta 367:58–92CrossRefGoogle Scholar
  48. 48.
    Nakamoto K (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-InterscienceGoogle Scholar
  49. 49.
    Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GCJ (1984) Chem Soc 7:1349–1356Google Scholar
  50. 50.
    Klein A, Neugebauer E, Krest A, Lüning A, Garbe S, Arefyeva N, Schlörer N (2015) Inorganics 3:118–138CrossRefGoogle Scholar
  51. 51.
    Jahn HA, Teller E (1937) Proc R Soc Lond Ser A161:220–235CrossRefGoogle Scholar
  52. 52.
    Matthews CJ, Heath SL, Elsegood MRJ, Clegg W, Leese TA, Lockhart JC (1998) J Chem Soc Dalton Trans 12:1973–1977CrossRefGoogle Scholar
  53. 53.
    Kelly JM, Tossi AB, McConnell DJ, OhUigin C (1985) Nucleic Acids Res 13:6017–6034CrossRefGoogle Scholar
  54. 54.
    Meenongwa A, Chaveerach U, Siriwong K (2011) Inorg Chim Acta 366:357–365CrossRefGoogle Scholar
  55. 55.
    Chaveerach U, Meenongwa A, Trongpanich Y, Soikum C, Chaveerach P (2010) Polyhedron 29:731–738CrossRefGoogle Scholar
  56. 56.
    Marmur J (1961) J Mol Biol 3:208–218CrossRefGoogle Scholar
  57. 57.
    Meenongwa A, Brissos RF, Soikum C, Chaveerach P, Gamez P, Trongpanich Y, Chaveerach U (2015) N J Chem 39:664–675CrossRefGoogle Scholar
  58. 58.
    Nyarko E, Hanada N, Habib A, Tabata M (2004) Inorg Chim Acta 357:739–745CrossRefGoogle Scholar
  59. 59.
    Silveira VC, Benezra H, Luz JS, Georg RC, Oliveira CC, Ferreira AMC (2011) J Inorg Biochem 105:1692–1703CrossRefGoogle Scholar
  60. 60.
    Ling X, Zhong W, Huang Q, Ni K (2008) J Photochem Photobiol B 93:172–176CrossRefGoogle Scholar
  61. 61.
    Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayev AI (1973) Biopolymers 12:89–110CrossRefGoogle Scholar
  62. 62.
    Collins CH, Lyne PM (1970) Microbiological methods. University Park Press, BaltimoreGoogle Scholar
  63. 63.
    Sigman DS, Chen C-HB (1986) Acc Chem Res 19:180–186CrossRefGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  • Víctor A. Barrera-Guzmán
    • 1
  • Edgar O. Rodríguez-Hernández
    • 1
  • Naytzé Ortíz-Pastrana
    • 2
  • Ricardo Domínguez-González
    • 3
  • Ana B. Caballero
    • 4
    • 5
  • Patrick Gamez
    • 4
    • 5
    • 6
    Email author
  • Norah Barba-Behrens
    • 1
    Email author
  1. 1.Departamento de Química Inorgánica, Facultad de QuímicaUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
  2. 2.Departamento de QuímicaCinvestavMexico CityMexico
  3. 3.Facultad de QuímicaUniversidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
  4. 4.Departament de Química Inorgánica y OrgánicaUniversitat de BarcelonaBarcelonaSpain
  5. 5.Institute of Nanoscience and Nanotechnology (IN2UB)BarcelonaSpain
  6. 6.Catalan Institution for Research and Advanced StudiesBarcelonaSpain

Personalised recommendations