JBIC Journal of Biological Inorganic Chemistry

, Volume 23, Issue 7, pp 995–1007 | Cite as

A reevaluation of iron binding by Mycobactin J

  • Courtney F. McQueen
  • John T. GrovesEmail author
Original Paper
Part of the following topical collections:
  1. Alison Butler: Papers in Celebration of Her 2018 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry


The complex stability constant (log β110) and the free iron concentration (pM) are used to compare the relative strength of iron binding by siderophores. Direct measurements of these thermodynamic parameters are often not possible for siderophores due to very large log β110 values ranging from 30 to 50. Instead, siderophore iron(III)-binding constants are determined by competitive experiments with other strong chelators with known values, such as EDTA. Iron(III) binding constants of water-insoluble siderophores, such as the mycobactins produced by the mycobacterium family, have never been directly measured. Since mycobactins contain two hydroxamic acid binding motifs, their log β110 values have been assumed to be comparable to those of other hydroxamate-based siderophores like desferrioxamine B, at ~ 30. However, exochelin MN, another mycobacterial siderophore that contains two hydroxamic acid moieties, has a log β110 of 39.1 and a pM of 31.1, which makes it among the strongest siderophores known. We have found that mycobactin J, the amphiphilic siderophore of Mycobacterium paratuberculosis, can remove iron(III) from TrenCAM (log β110 = 43.6) within 1 min in methanol. This surprising result indicates that log β110 for mycobactin J is ~ 43 and the ligand exchange kinetics in methanol is fast. The results imply that mycobactins are capable of removing iron quickly from very strongly binding siderophores in a cellular milieu. We propose a model mechanism for iron acquisition by pathogenic mycobacteria in vivo. This model explains how the host iron captured by siderophores can be returned to the invading pathogen even in the absence of active uptake mechanisms.

Graphical abstract


Iron acquisition Carboxymycobactin Exochelin Bacterial microvesicles 



Mycobactin J





This work was supported by the US National Science Foundation award CHE-1464578. This paper is dedicated, with congratulations, to Alison Butler on the occasion of her receipt of the ACS Alfred Bader Award in Bioinorganic or Bioorganic Chemistry for 2018.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

775_2018_1592_MOESM1_ESM.pdf (304 kb)
Supplementary material 1 (PDF 304 kb)


  1. 1.
    Dye C, Scheele S, Dolin P, Pathania V (1999) Raviglione RC and project WHOGSM. JAMA-J Am Med Assoc 282:677–686CrossRefGoogle Scholar
  2. 2.
    Marx FM, Yaesoubi R, Menzies NA, Salomon JA, Bilinski A, Beyers N, Cohen T (2018) Lancet Glob Health 6:E426–E435CrossRefGoogle Scholar
  3. 3.
    Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B, Dowdy D, Kasmar A, Cardenas V (2017) J Infect Dis 216:S629–S635CrossRefGoogle Scholar
  4. 4.
    Auld SC, Kasmar AG, Dowdy DW, Mathema B, Gandhi NR, Churchyard GJ, Rustomjee R, Shah NS (2017) J Infect Dis 216:S662–S668CrossRefGoogle Scholar
  5. 5.
    Global tuberculosis control: epidemiology, strategy, financing: WHO report 2009 (2009) World Health Organization. Switzerland, Geneva, pp 6–33Google Scholar
  6. 6.
    Vilcheze C, Kim J, Jacobs WR (2018) Antimicrob Agents Chemother 62(3). pii: e02165-17.
  7. 7.
    Trofimov V, Kicka S, Mucaria S, Hanna N, Ramon-Olayo F, Vela-Gonzalez Del Peral L, Lelievre J, Ballell L, Scapozza L, Besra GS, Cox JAG, Soldati T (2018) Sci Reports 8:3939. CrossRefGoogle Scholar
  8. 8.
    Rehberg N, Akone HS, Ioerger TR, Erlenkamp G, Daletos G, Gohlke H, Proksch P, Kalscheuer R (2018) ACS Infect Dis 4:123–134CrossRefGoogle Scholar
  9. 9.
    Meylan S, Andrews IW, Collins JJ (2018) Cell 172:1228–1238CrossRefGoogle Scholar
  10. 10.
    Gokarn K, Pal RB (2018) Infect Drug Resist 11:61–75CrossRefGoogle Scholar
  11. 11.
    Emani CS, Williams MJ, Wiid IJ, Baker B and Carolis C (2018) Antimicrob Agents Chemother. CrossRefGoogle Scholar
  12. 12.
    De Matteis L, Jary D, Lucia A, Garcia-Embid S, Serrano-Sevilla I, Perez D, Ainsa JA, Navarro FP, de la Fuente JM (2018) Chem Eng J 340:181–191CrossRefGoogle Scholar
  13. 13.
    Song LJ, Jenner M, Masschelein J, Jones C, Bull MJ, Harris SR, Hartkoorn RC, Vocat A, Romero-Canelon I, Coupland P, Webster G, Dunn M, Weiser R, Paisey C, Cole ST, Parkhill J, Mahenthiralingam E, Challis GL (2017) J Am Chem Soc 139:7974–7981CrossRefGoogle Scholar
  14. 14.
    Masschelein J, Jenner M, Challis GL (2017) Nat Prod Rep 34:712–783CrossRefGoogle Scholar
  15. 15.
    Ghosh M, Miller PA, Mollmann U, Claypoo WD, Schroeder VA, Wolter WR, Suckow M, Yu HL, Li S, Huang WG, Zajicek J, Miller MJ (2017) J Med Chem 60:4577–4583CrossRefGoogle Scholar
  16. 16.
    Ji C, Miller PA, Miller MJ (2012) J Am Chem Soc 134:9898–9901CrossRefGoogle Scholar
  17. 17.
    Juárez-Hernández RR, HZ H, Miller MJ (2013) Siderophore-mediated iron acquisition: Target for the development of selective antibiotics towards mycobacterium tuberculosis. Springer, HeidelbergGoogle Scholar
  18. 18.
    Ryan KJ, Ray CG (eds) (2003) Sherris medical microbiology: An introduction to infectious diseases sherris medical microbiology: an introduction to infectious diseases. McGraw-Hill, New YorkGoogle Scholar
  19. 19.
    Springer SD, Butler A (2016) Coord Chem Rev 306:628–635CrossRefGoogle Scholar
  20. 20.
    Butler A, Theisen RM (2010) Coord Chem Rev 254:288–296CrossRefGoogle Scholar
  21. 21.
    Carver PL (2018) Cur Med Chem 25:85–96CrossRefGoogle Scholar
  22. 22.
    Bairwa G, Jung WH, Kronstad JW (2017) Metallomics 9:215–227CrossRefGoogle Scholar
  23. 23.
    Ali MK, Kim RY, Karim R, Mayall JR, Martin KL, Shahandeh A, Abbasian F, Starkey MR, Loustaud-Ratti V, Johnstone D, Milward EA, Hansbro PM, Horvat JC (2017) Int J Biochem Cell Biol 88:181–195CrossRefGoogle Scholar
  24. 24.
    Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Trends Mol Med 22:1077–1090CrossRefGoogle Scholar
  25. 25.
    Wang J, Moolji J, Dufort A, Staffa A, Domenech P, Reed MB, Behr MA (2016) J Bacteriol 198:857–866CrossRefGoogle Scholar
  26. 26.
    Sritharan M (2016) J Bacteriol 198:2399–2409CrossRefGoogle Scholar
  27. 27.
    Neyrolles O, Wolschendorf F, Mitra A, Niederweis M (2015) Immun Rev 264:249–263CrossRefGoogle Scholar
  28. 28.
    Raymond KN, Allred BE, Sia AK (2015) Acc Chem Res 48:2496–2505CrossRefGoogle Scholar
  29. 29.
    Raymond KN, Muller G, Matzanke BF (1984) Top Curr Chem 123:49–102CrossRefGoogle Scholar
  30. 30.
    Fang Z, Sampson SL, Warren RM, van Pittius NCG, Newton-Foot M (2015) Tuberculosis 95:123–130CrossRefGoogle Scholar
  31. 31.
    Horwitz LD, Horwitz MA (2014) Antiox Redox Signal 21:2246–2261CrossRefGoogle Scholar
  32. 32.
    Hardy CD, Butler A (2018) J Biol Inorg Chem 23.
  33. 33.
    De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE 3rd (2000) Proc Natl Acad Sci USA 97:1252–1257CrossRefGoogle Scholar
  34. 34.
    Ratledge C (2004) Tuberculosis 84:110–130CrossRefGoogle Scholar
  35. 35.
    Lane SJ, Marshall PS, Upton RJ, Ratledge C, Ewing M (1995) Tetrahedron Lett 36:4129–4132CrossRefGoogle Scholar
  36. 36.
    Gobin J, Moore CH, Reeve JR, Wong DK, Gibson BW, Horwitz MA (1995) Proc Natl Acad Sci USA 92:5189–5193CrossRefGoogle Scholar
  37. 37.
    Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995) Chem Biol 2:553–561CrossRefGoogle Scholar
  38. 38.
    Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995) Biochem J 305:187–196CrossRefGoogle Scholar
  39. 39.
    Snow GA (1970) Bacteriol Rev 34:99–125PubMedPubMedCentralGoogle Scholar
  40. 40.
    Schwartz BD, De Voss JJ (2001) Tetrahedron Lett 42:3653–3655CrossRefGoogle Scholar
  41. 41.
    Snow GA (1965) Biochem J 97:166CrossRefGoogle Scholar
  42. 42.
    Vergne AF, Walz AJ, Miller MJ (2000) Nat Prod Rep 17:99–116CrossRefGoogle Scholar
  43. 43.
    Tsuda M, Yamakawa M, Oka S, Tanaka Y, Hoshino Y, Mikami Y, Sato A, Fujiwara H, Ohizumi Y, Kobayashi J (2005) J Nat Prod 68:462–464CrossRefGoogle Scholar
  44. 44.
    Mitchell JM, Shaw JT (2007) Org Lett 9:1679–1681CrossRefGoogle Scholar
  45. 45.
    Ying Y, Hong J (2007) Tetrahedron Lett 48:8104–8107CrossRefGoogle Scholar
  46. 46.
    Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A (2000) Science 287:1245–1247CrossRefGoogle Scholar
  47. 47.
    Lambrecht RS, Collins MT (1993) Microb Pathog 14:229–238CrossRefGoogle Scholar
  48. 48.
    Luo M, Fadeev EA, Groves JT (2005) J Am Chem Soc 127:1726–1736CrossRefGoogle Scholar
  49. 49.
    Fadeev EA, Luo MK, Groves JT (2004) J Am Chem Soc 126:12065–12075CrossRefGoogle Scholar
  50. 50.
    Xu GF, Martinez JS, Groves JT, Butler A (2002) J Am Chem Soc 124:13408–13415CrossRefGoogle Scholar
  51. 51.
    Luo M, Lin H, Fischbach MA, Liu DR, Walsh CT, Groves JT (2006) ACS Chem Biol 1:29–32CrossRefGoogle Scholar
  52. 52.
    Luo M, Fadeev EA, Groves JT (2005) Nat Chem Biol 1:149–153CrossRefGoogle Scholar
  53. 53.
    Prados-Rosales R, Weinrick BC, Pique DG, Jacobs WR, Casadevall A, Rodriguez GM (2014) J Bacteriol 196:1250–1256CrossRefGoogle Scholar
  54. 54.
    Rodgers SJ, Lee CW, Ng CY, Raymond KN (1987) Inorg Chem 26:1622–1625CrossRefGoogle Scholar
  55. 55.
    Thomas F, Baret P, Imbert D, Pierre JL, Serratrice G (1999) Bioorg Med Chem Lett 9:3035–3040CrossRefGoogle Scholar
  56. 56.
    McQueen TM (2004) A novel approach to the study of equilibrium phase behavior: theory and practice. Chemistry. Harvey Mudd College, ClaremontGoogle Scholar
  57. 57.
    Miller MJ, Walz AJ, Zhu H, Wu CR, Moraski G, Mollmann U, Tristani EM, Crumbliss AL, Ferdig MT, Checkley L, Edwards RL, Boshoff HI (2011) J Am Chem Soc 133:2076–2079CrossRefGoogle Scholar
  58. 58.
    McBride NS, Hall EAH (2015) Electroanalysis 27:833–842CrossRefGoogle Scholar
  59. 59.
    Crumbliss AL and Harrington JM (2009) In: R. Van Eldik and C. D. Hubbard (eds) Advances in Inorganic Chemistry, vol 61: Metal Ion Controlled Reactivity, p 179–250, Elsevier Academic Press Inc, San DiegoGoogle Scholar
  60. 60.
    Taylor SW, Luther GW, Waite JH (1994) Inorg Chem 33:5819–5824CrossRefGoogle Scholar
  61. 61.
    Holt PD, Reid RR, Lewis BL, Luther GW, Butler A (2005) Inorg Chem 44:7671–7677CrossRefGoogle Scholar
  62. 62.
    Lewis BL, Holt PD, Taylor SW, Wilhelm SW, Trick CG, Butler A, Luther GW (1995) Mar Chem 50:179–188CrossRefGoogle Scholar
  63. 63.
    Kikkeri R, Traboulsi H, Humbert N, Gumienna-Kontecka E, Arad-Yellin R, Melman G, Elhabiri M, Albrecht-Gary AM, Shanzer A (2007) Inorg Chem 46:2485–2497CrossRefGoogle Scholar
  64. 64.
    Harrington JM, Park H, Ying YC, Hong JY, Crumbliss AL (2011) Metallomics 3:464–471CrossRefGoogle Scholar
  65. 65.
    Faller B, Nick H (1994) J Am Chem Soc 116:3860–3865CrossRefGoogle Scholar
  66. 66.
    Harris WR, Raymond KN (1979) J Am Chem Soc 101:6534–6541CrossRefGoogle Scholar
  67. 67.
    Schwarzenbach G, Schwarzenbach K (1963) Helv Chim Acta 46:1390–1400CrossRefGoogle Scholar
  68. 68.
    Ratledge C, Dale J (eds) (1999) Mycobacteria: molecular biology and virulence mycobacteria: molecular biology and virulence. Blackwell Science Ltd., OxfordGoogle Scholar
  69. 69.
    De Voss JJ, Rutter K, Schroeder BG, Barry CE (1999) J Bacteriol 181:4443–4451PubMedPubMedCentralGoogle Scholar
  70. 70.
    MacCordick HJ, Schleiffer JJ, Duplatre G (1985) Radiochim Acta 38:43–47CrossRefGoogle Scholar
  71. 71.
    Snow GA (1969) Biochem J 115:199–205CrossRefGoogle Scholar
  72. 72.
    Harris WR, Carrano CJ, Cooper SR, Sofen SR, Avdeef AE, McArdle JV, Raymond KN (1979) J Am Chem Soc 101:6097–6104CrossRefGoogle Scholar
  73. 73.
    Tufano TP, Raymond KN (1981) J Am Chem Soc 103:6617–6624CrossRefGoogle Scholar
  74. 74.
    Dhungana S, Miller MJ, Dong L, Ratledge C, Crumbliss AL (2003) J Am Chem Soc 125:7654–7663CrossRefGoogle Scholar
  75. 75.
    Evers A, Hancock RD, Martell AE, Motekaitis RJ (1989) Inorg Chem 28:2189–2195CrossRefGoogle Scholar
  76. 76.
    Farkas E, Enyedy EA, Csoka H (1999) Polyhedron 18:2391–2398CrossRefGoogle Scholar
  77. 77.
    Bagno A, Comuzzi C, Scorrano G (1994) J Am Chem Soc 116:916–924CrossRefGoogle Scholar
  78. 78.
    Brink CP, Crumbliss AL (1984) Inorg Chem 23:4708–4718CrossRefGoogle Scholar
  79. 79.
    Hocking RK, DeBeer George S, Raymond KN, Hodgson KO, Hedman B, Solomon EI (2010) J Am Chem Soc 132:4006–4015CrossRefGoogle Scholar
  80. 80.
    Ratledge C, Patel PV, Mundy J (1982) J Gen Microbiol 128:1559–1565PubMedGoogle Scholar
  81. 81.
    Macham LP, Ratledge C, Nocton JC (1975) Infect Immun 12:1242–1251PubMedPubMedCentralGoogle Scholar
  82. 82.
    Jones CM, Wells RM, Madduri AVR, Renfrow MB, Ratledge C, Moody DB, Niederweis M (2014) Proc Natl Acad Sci USA 111:1945–1950CrossRefGoogle Scholar
  83. 83.
    Gobin J, Horwitz MA (1996) J Exp Med 183:1527–1532CrossRefGoogle Scholar
  84. 84.
    Stephenson MC, Ratledge C (1979) J Gen Microbiol 110:193–202CrossRefGoogle Scholar
  85. 85.
    van Manen HJ, Kraan YM, Roos D, Otto C (2005) Proc Natl Acad Sci USA 102:10159–10164CrossRefGoogle Scholar
  86. 86.
    Bougneres L, Helft J, Tiwari S, Vargas P, Chang BHJ, Chan L, Campisi L, Lauvau G, Hugues S, Kumar P, Kamphorst AO, Dumenil AML, Nussenzweig M, MacMicking JD, Amigorena S, Guermonprez P (2009) Immunity 31:232–244CrossRefGoogle Scholar
  87. 87.
    Rodriguez GM, Prados-Rosales R (2016) Appl Microbiol Biotechnol 100:3887–3892CrossRefGoogle Scholar
  88. 88.
    Rezabal E, Mercero JM, Lopez X, Ugalde JM (2006) J Inorg Biochem 100:374–384CrossRefGoogle Scholar
  89. 89.
    Lide DR (ed) (2010) CRC Handbook of Chemistry and Physics. CRC Press/Taylor and Francis, Boca RatonGoogle Scholar
  90. 90.
    Fricke H (1953) Nature 172:731–732CrossRefGoogle Scholar
  91. 91.
    Fricke H, Schwan HP, Li K (1956) Nature 177:134–135CrossRefGoogle Scholar
  92. 92.
    Asami K, Hanai T, Koizumi N (1976) J Membr Biol 28:169–180CrossRefGoogle Scholar
  93. 93.
    Serratrice G, Biaso F, Pierre J-L, Blanc S, Albrecht-Gary A-M (2007) Eur J Inorg Chem 2007:3681–3685CrossRefGoogle Scholar
  94. 94.
    Neese F, Solomon EI (1998) J Am Chem Soc 120:12829–12848CrossRefGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations