Skip to main content
Log in

Antenna effect and phosphorescence spectra to find the location of drug tetracycline in bovine β-lactoglobulin A

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A ternary system comprising of a Eu(III) complex of the drug Tetracycline hydrochloride (Eu3TC) bound to bovine β-lactoglobulin variant A (BLGA) in aqueous buffer at physiological pH (pH = 7.4) has been investigated to exploit the enhanced “antenna effect” to locate the bound drug and find the microenvironment of the binding site. Steady-state and time-resolved emission studies at room temperature as well as at 77 K have been carried out to evaluate the binding parameters in the binary system consisting of BLGA and tetracycline hydrochloride (TC). Low-temperature phosphorescence studies at 77 K of pure BLGA confirm Trp 19 to be the emitting residue, while Trp 61 is silent. Enhancement of BLGA phosphorescence emission in the ternary system at 77 K indicates that Trp 19 is very close to Eu(III) in the Eu3TC complex. The molecular docking results further confirm that TC binds close to Trp 19 in a hydrophobic domain. The results thus obtained can provide guidelines to design and synthesize target-oriented drugs as well as suitable bio-probes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Wong DWS, Camirand WM, Pavlath AE (1996) Structures and functionalities of milk proteins. Crit Rev Food Sci Nutr 36:807–844

    Article  PubMed  CAS  Google Scholar 

  2. Sawyer L, Kontopidis G (2000) The core lipocalin, bovine β-lactoglobulin. Biochim Biophys Acta 1482:136–148

    Article  PubMed  CAS  Google Scholar 

  3. Dong A, Matsuura J, Allison SD, Chrisman E, Manning MC, Carpenter JF (1996) Infrared and circular dichroism spectroscopic characterization of structural differences between β-lactoglobulin A and B. Biochemistry 35:1450–1457

    Article  PubMed  CAS  Google Scholar 

  4. Qin BY, Bewley MC, Creamer LK, Baker HM, Baker EN, Jameson GB (1998) Structural basis of the Tanford transition of bovine β-lactoglobulin. Biochemistry 37:14014–14023

    Article  PubMed  CAS  Google Scholar 

  5. Chobert JM, Haertlé T (1997) Protein-lipid and protein–flavor interactions. In: Damodaran S, Paraf A (eds) Food proteins and their applications. Marcel-Dekker, New York, pp 143–170

    Google Scholar 

  6. Hambling SM, McAlpine AS, Sawyer L (1992) β-Lactoglobulin. In: Fox PF (ed) Advanced dairy chemistry 1: proteins. Elsevier, London, pp 141–190

    Google Scholar 

  7. Kontopidis G, Holt C, Sawyer L (2002) The ligand-binding site of bovine [β]-lactoglobulin: evidence for a function? J Mol Biol 318:1043–1055

    Article  PubMed  CAS  Google Scholar 

  8. Wu SY, Pérez MD, Puyol P, Sawyer L (1999) β-Lactoglobulin binds palmitate within its central cavity. J Biol Chem 274:170–174

    Article  PubMed  CAS  Google Scholar 

  9. Selzer MG, Zhu B, Block NL, Lokeshwar BL (1999) CMT-3, a chemically modified tetracycline, inhibits bony metastases and delays the development of paraplegia in a rat model of prostate cancer. Ann N Y Acad Sci 878:882

    Article  Google Scholar 

  10. Rudek M, Figg W, Dyer V, Dahut W, Turner M, Steinburg S (2000) A phase I clinical trial of oral Col-3, a matrix metalloproteinase inhibitor, administered daily in patients with refractory metastatic cancer [abstract]. Proc Am Assoc Cancer Res 41:612

    Google Scholar 

  11. Kroon AM, Dontje BH, Holtrop M, Van den Bogert C (1984) The mitochondrial genetic system as a target for chemotherapy: tetracyclines as cytostatics. Cancer Lett 25:33–40

    Article  PubMed  CAS  Google Scholar 

  12. Duivenvoorden WC, Hirte HW, Singh G (1997) Use of tetracycline as an inhibitor of matrix metalloproteinase activity secreted by human bone-metastasizing cancer cells. Invasion Metastasis 17:312–322

    PubMed  CAS  Google Scholar 

  13. Rubins JB, Charboneau D, Alter MD, Bitterman PB, Kratzke RA (2001) Inhibition of mesothelioma cell growth in vitro by doxycycline. J Lab Clin Med 138:101–106

    Article  PubMed  CAS  Google Scholar 

  14. Tolomeo M, Grimaudo S, Milano S, La Rosa M, Ferlazzo V, Di Bella G (2001) Effects of chemically modified tetracyclines (CMTs) in sensitive, multidrug resistant and apoptosis resistant leukaemia cell lines. Br J Pharmacol 133:306–314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Viseu MI, Carvalho TI, Costa SMB (2004) Conformational transitions in [beta]- lactoglobulin induced by cationic amphiphiles: equilibrium studies. Biophys J 86:2392–2402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Creamer LK (1995) Effect of sodium dodecyl sulfate and palmitic acid on the equilibrium unfolding of bovine beta-lactoglobulin. Biochemistry 34:7170–7176

    Article  PubMed  CAS  Google Scholar 

  17. Sakai K, Sakurai K, Sakai M, Hoshino M, Goto Y (2000) Conformation and stability of thiol-modified bovine [beta] lactoglobulin. Protein Sci 9:1719–1729

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Ghorai SK, Samanta SK, Mukherjee M, Saha Sardar P, Ghosh S (2013) Tuning of “antenna effect” of Eu(III) in ternary systems in aqueous medium through binding with protein. Inorg Chem 52:1476–1487

    Article  PubMed  CAS  Google Scholar 

  19. Ghorai SK, Samanta SK, Mukherjee M, Ghosh S (2012) Protein-mediated efficient synergistic “antenna effect” in a ternary system in D2O medium. J Phys Chem A 116:8303–8312

    Article  PubMed  CAS  Google Scholar 

  20. Samanta SK, Ghorai SK, Ghosh S (2013) Efficient “antenna effect” in the complex of (+) catechin and Tb(III) lodged inside the nano-cavity of β-cyclodextrin. J Photochem Photobiol A 252:145–151

    Article  CAS  Google Scholar 

  21. Samanta SK, Sanyal S, Samanta S, Ghosh S (2015) Designing hydrophobic sheet protected Eu(III)-tetracycline complex using long chain unsaturated fatty acid: efficient ‘antenna effect’ in aqueous medium. J Lumin 160:262–270

    Article  CAS  Google Scholar 

  22. Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw Hill, New York, pp 235–237

    Google Scholar 

  23. FELIX 32, version 1.1 (2003) Operation manual. Photon Technology International, Edison

    Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov LN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  25. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  PubMed  CAS  Google Scholar 

  26. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 13:1605–1612

    Article  CAS  Google Scholar 

  27. Hubbard SJ, Thorton JM (1993) NACESS computer program. Department of Biochemistry and Molecular Biology, University College, London

    Google Scholar 

  28. Courrol LC, Samad RE (2008) Applications of Europium tetracycline complex: a review. Curr Pharm Anal 4:238–248

    Article  CAS  Google Scholar 

  29. Courrol LC, de Oliveira SFR, Gomes L, Júnior NDV (2007) Energy transfer study of europium–tetracycline complexes. J Lumin 122:288–290

    Article  CAS  Google Scholar 

  30. Ghorai SK, Tripathy DR, Dasgupta S, Ghosh S (2014) Location and binding mechanism of an ESIPT probe 3-hydroxy-2-napthoic acid in unsaturated fatty acid bound serum albumins. J Photochem Photobiol B 131:1–15

    Article  PubMed  CAS  Google Scholar 

  31. Mukherjee M, Saha Sardar P, Ghorai SK, Samanta SK, Roy AS, Dasgupta S, Ghosh S (2012) Interaction of multitryptophan protein with drug: an insight into the binding mechanism and the binding domain by time resolved emission, anisotropy, phosphorescence and docking. J Photochem Photobiol B 115:93–104

    Article  PubMed  CAS  Google Scholar 

  32. Ware WR (1962) Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J Phys Chem 66:455–458

    Article  CAS  Google Scholar 

  33. Mehraban MH, Odooli S, Yousefi R, Roghanian R, Motovali-Bashi M, Moosavi-Movahedi A (2017) The interaction of beta-lactoglobulin with ciprofloxacin and kanamycin; a spectroscopic and molecular modeling approach. J Biomol Struct Dyn 35(9):1968–1978

    Article  PubMed  CAS  Google Scholar 

  34. Bi SY, Song DQ, Ding L, Tian Y, Zhou X, Liu X (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta Part A 61:629–636

    Article  CAS  Google Scholar 

  35. Mukherjee M, Saha Sardar P, Ghorai SK, Samanta SK, Singha Roy A, Dasgupta S, Ghosh S (2013) A comparative study of interaction of tetracycline with several proteins using time resolved anisotropy, phosphorescence, docking and FRET. Plos One 8:60940–60956

    Article  CAS  Google Scholar 

  36. Mohammadi F, Sahihi M, Bordbar AK (2015) Multispectroscopic and molecular modeling studies on the interaction of two curcuminoids with β-lactoglobulin. Spectrochim Acta Part A Mol Biomol Spectrosc 140:274–282

    Article  CAS  Google Scholar 

  37. Mohammadi F, Bordbar AK, Mohammadi K, Divsalar A, Saboury AA (2015) Circular dichroism and fluorescence spectroscopic study on the interaction of bisdemethoxycurcumin and diacetylbisdemethoxycurcumin with human serum albumin. Can J Chem 88:155–163

    Article  CAS  Google Scholar 

  38. Lehrer S (2015) Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  Google Scholar 

  39. Benesi AH, Hilderbrand JHJ (1949) A Spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  40. Pal A, Maity SS, Samanta S, Saha Sardar P, Ghosh S (2010) Interaction of the excited state intramolecular proton transfer probe 3- hydroxy—2- naphthoic acid with poly N- Vinyl -2- pyrrolidone polymer in water: an insight into the water structure in the binding region. J Luminescence 130:1975–1982

    Article  CAS  Google Scholar 

  41. Samanta S, Sanyal S, Samanta S, Ghosh S (2015) Confirmation for designing hydrophobic sheet protected Eu(III)-tetracycline complex using long chain unsaturated fatty acid—efficient ‘antenna effect’ in aqueous medium. J. Luminiscence 160:262–270

    Article  CAS  Google Scholar 

  42. Supkowski RM, Horrocks WD (2002) On the determination of the number of water molecules, q, coordinated to europium(III) ions in solution from luminescence decay lifetimes. Inorg Chim Acta 340:44–48

    Article  CAS  Google Scholar 

  43. Mukherjee M, Ghosh R, Chattopadhyay K, Ghosh S (2016) Stepwise unfolding of a multi-tryptophan protein MPT63 with immunoglobulin-like fold: detection of zone-wise perturbation during guanidine hydrochloride-induced unfolding using phosphorescence spectroscopy. RSC Adv 66:61077–61087

    Article  CAS  Google Scholar 

  44. Cho Y, Batt CA, Sawyer L (2016) Probing the retinol-binding site of bovine betalactoglobulin. J Biol Chem 269:11102–11107

    Google Scholar 

  45. Harvey BJ, Bell E, Brancaleon L (2007) A tryptophan rotamer located in a polar environment probes pH-dependent conformational changes in bovine β-lactoglobulin A. J Phys Chem B. 111:2610–2620

    Article  PubMed  CAS  Google Scholar 

  46. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New York

    Book  Google Scholar 

  47. Pires DE, Ascher DB (2016) CSM-lig: a web server for assessing and comparing protein–small molecule affinities. Nucleic Acids Res 8(44):557–561

    Article  CAS  Google Scholar 

  48. Martins PA, Gomes F, Vaz WL, Moreno MJ (2008) Binding of phospholipids to beta-Lactoglobulin and their transfer to lipid bilayers. Biochim Biophys Acta 1778:1308–1315

    Article  PubMed  CAS  Google Scholar 

  49. Bello M (2014) Binding free energy calculations between bovine β-lactoglobulin and four fatty acids using the MMGBSA method. Biopolymers 101(10):1010–1018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

S. G. gratefully acknowledges the Department of Science and Technology (DST), Government of India (Grant no.: SB/S1/PC-003/2013), and MBR gratefully acknowledges UGC [Minor Research Project No.F.PS-146/15-16 (ERO)] for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maitrayee Basu Roy or Sanjib Ghosh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, M., Saha Sardar, P., Roy, P. et al. Antenna effect and phosphorescence spectra to find the location of drug tetracycline in bovine β-lactoglobulin A. J Biol Inorg Chem 23, 917–927 (2018). https://doi.org/10.1007/s00775-018-1591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1591-3

Keywords

Navigation