Skip to main content
Log in

Extension of C. elegans lifespan using the ·NO-delivery dinitrosyl iron complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The ubiquitous and emerging physiology function of endogenous nitric oxide in vascular, myocardial, immune, and neuronal systems prompts chemists to develop a prodrug for the controlled delivery of ·NO in vivo and for the translational biomedical application. Inspired by the discovery of natural [Fe(NO)2] motif, herein, we develop the synthetic dinitrosyl iron complexes (DNICs) [Fe2(μ-SR)2(NO)4] (1) as a universal platform for the O2-triggered release of ·NO, for the regulation of ·NO-release kinetics (half-life = 0.6–27.4 h), and for the activation of physiological function of ·NO. Using C. elegans as a model organism, the ·NO-delivery DNIC 1 regulates IIS signaling pathway, AMPK signaling pathway, and mitochondrial function pathway to extend the lifespan and to delay the aging process based on the lifespan analysis, SA-βgal activity assay, and next-generation RNA sequencing analysis. This study unveils the anti-aging effect of ·NO and develops DNICs as a chemical biology probe for the continued discovery of unprecedented NO physiology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Proc Natl Acad Sci USA 74:3203–3207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ignarro LJ, Byrns RE, Buga GM, Wood KS (1987) Circ Res 61:866–879

    Article  PubMed  CAS  Google Scholar 

  3. Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA (2005) Proc Natl Acad Sci USA 102:13147–13152. https://doi.org/10.1073/pnas.0502979102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bogdan C (2015) Trends Immunol 36:161–178. https://doi.org/10.1016/j.it.2015.01.003

    Article  PubMed  CAS  Google Scholar 

  5. Bishop A, Anderson JE (2005) Toxicology 208:193–205. https://doi.org/10.1016/j.tox.2004.11.034

    Article  PubMed  CAS  Google Scholar 

  6. Paolocci N, Katori T, Champion HC, St John ME, Miranda KM, Fukuto JM, Wink DA, Kass DA (2003) Proc Natl Acad Sci USA 100:5537–5542. https://doi.org/10.1073/pnas.0937302100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Irvine JC, Ritchie RH, Favaloro JL, Andrews KL, Widdop RE, Kemp-Harper BK (2008) Trends in Pharmacol Sci 29:601–608. https://doi.org/10.1016/j.tips.2008.08.005

    Article  CAS  Google Scholar 

  8. Sabbah HN, Tocchetti CG, Wang M, Daya S, Gupta RC, Tunin RS, Mazhari R, Takimoto E, Paolocci N, Cowart D, Colucci WS, Kass DA (2013) Circ Heart Fail 6:1250–1258. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hunt AP, Lehnert N (2015) Acc Chem Res 48:2117–2125. https://doi.org/10.1021/acs.accounts.5b00167

    Article  PubMed  CAS  Google Scholar 

  10. Gusarov I, Gautier L, Smolentseva O, Shamovsky I, Eremina S, Mironov A, Nudler E (2013) Cell 152:818–830. https://doi.org/10.1016/j.cell.2012.12.043

    Article  PubMed  CAS  Google Scholar 

  11. Derbyshire ER, Marletta MA (2012) Annu Rev Biochem 81:533–559. https://doi.org/10.1146/annurev-biochem-050410-100030

    Article  PubMed  CAS  Google Scholar 

  12. Cary SPL, Winger JA, Derbyshire ER, Marletta MA (2006) Trends Biochem Sci 31:231–239. https://doi.org/10.1016/j.tibs.2006.02.003

    Article  PubMed  CAS  Google Scholar 

  13. Keefer LK, Nims RW, Davies KM, Wink DA (1996) Methods Enzymol 268:281–293

    Article  PubMed  CAS  Google Scholar 

  14. Majumder S, Sinha S, Siamwala JH, Muley A, Seerapu HR, Kolluru GK, Veeriah V, Nagarajan S, Sridhara SRC, Priya MK, Kuppusamy M, Srinivasan S, Konikkat S, Soundararajan G, Venkataraman S, Saran U, Chatterjee S (2014) Nitric Oxide 36:76–86. https://doi.org/10.1016/j.niox.2013.12.002

    Article  PubMed  CAS  Google Scholar 

  15. Pauwels B, Boydens C, Vanden Daele L, Van de Voorde J (2016) J Pharm Pharmacol 68:293–304. https://doi.org/10.1111/jphp.12511

    Article  PubMed  CAS  Google Scholar 

  16. de Lima RG, Silva BR, da Silva RS, Bendhack LM (2014) Molecules 19:9628–9654. https://doi.org/10.3390/molecules19079628

    Article  PubMed  CAS  Google Scholar 

  17. DuMond JF, King SB (2011) Antioxid Redox Signal 14:1637–1648. https://doi.org/10.1089/ars.2010.3838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Franco LP, Cicillini SA, Biazzotto JC, Schiavon MA, Mikhailovsky A, Burks P, Garcia J, Ford PC, da Silva RS (2014) J Phys Chem A 118:12184–12191. https://doi.org/10.1021/jp5111218

    Article  PubMed  CAS  Google Scholar 

  19. Fry NL, Mascharak PK (2011) Acc Chem Res 44:289–298. https://doi.org/10.1021/Ar100155t

    Article  PubMed  CAS  Google Scholar 

  20. Halpenny GM, Gandhi KR, Mascharak PK (2010) Acs Med Chem Lett 1:180–183. https://doi.org/10.1021/ml1000646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Heilman BJ, St John J, Oliver SRJ, Mascharak PK (2012) J Am Chem Soc 134:11573–11582. https://doi.org/10.1021/ja3022736

    Article  PubMed  CAS  Google Scholar 

  22. Ostrowski AD, Ford PC (2009) Dalton Trans. https://doi.org/10.1039/b912898k

    Article  PubMed  Google Scholar 

  23. Tinberg CE, Tonzetich ZJ, Wang H, Do LH, Yoda Y, Cramer SP, Lippard SJ (2010) J Am Chem Soc 132:18168–18176. https://doi.org/10.1021/ja106290p

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kennedy MC, Antholine WE, Beinert H (1997) J Biol Chem 272:20340–20347

    Article  PubMed  CAS  Google Scholar 

  25. Bosworth CA, Toledo JC Jr, Zmijewski JW, Li Q, Lancaster JR Jr (2009) Proc Natl Acad Sci USA 106:4671–4676. https://doi.org/10.1073/pnas.0710416106

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ye S, Neese F (2010) J Am Chem Soc 132:3646–3647. https://doi.org/10.1021/ja9091616

    Article  PubMed  CAS  Google Scholar 

  27. Speelman AL, Zhang B, Silakovi A, Skodje KM, Alp EE, Zhao J, Hu MY, Kim E, Krebs C, Lehnert N (2016) Inorg Chem 55:5485–5501. https://doi.org/10.1021/acs.inorgchem.6b00510

    Article  PubMed  CAS  Google Scholar 

  28. Fitzpatrick J, Kim E (2015) Acc Chem Res 48:2453–2461. https://doi.org/10.1021/acs.accounts.5b00246

    Article  PubMed  CAS  Google Scholar 

  29. Pulukkody R, Darensbourg MY (2015) Acc Chem Res 48:2049–2058. https://doi.org/10.1021/acs.accounts.5b00215

    Article  PubMed  CAS  Google Scholar 

  30. Tsai ML, Tsou CC, Liaw WF (2015) Acc Chem Res 48:1184–1193. https://doi.org/10.1021/ar500459j

    Article  PubMed  CAS  Google Scholar 

  31. Lu TT, Weng TC, Liaw WF (2014) Angew Chem 53:11562–11566. https://doi.org/10.1002/anie.201407603

    Article  CAS  Google Scholar 

  32. Tseng YT, Chen CH, Lin JY, Li BH, Lu YH, Lin CH, Chen HT, Weng TC, Sokaras D, Chen HY, Soo YL, Lu TT (2015) Chem Eur J 21:17570–17573. https://doi.org/10.1002/chem.201503176

    Article  PubMed  CAS  Google Scholar 

  33. Skodje Kelsey M, Min-Young Kwon Su, Chung Wol, Kim E (2014) Chem Sci 5:2374–2378

    Article  CAS  Google Scholar 

  34. Foster MW, Liu LM, Zeng M, Hess DT, Stamler JS (2009) Biochemistry 48:792–799. https://doi.org/10.1021/bi801813n

    Article  PubMed  CAS  Google Scholar 

  35. Boese M, Mordvintcev PI, Vanin AF, Busse R, Mulsch A (1995) J Biol Chem 270:29244–29249. https://doi.org/10.1074/jbc.270.49.29244

    Article  PubMed  CAS  Google Scholar 

  36. Burks PT, Garcia JV, GonzalezIrias R, Tillman JT, Niu MT, Mikhailovsky AA, Zhang JP, Zhang F, Ford PC (2013) J Am Chem Soc 135:18145–18152. https://doi.org/10.1021/ja408516w

    Article  PubMed  CAS  Google Scholar 

  37. Garcia JV, Yang JP, Shen DK, Yao C, Li XM, Wang R, Stucky GD, Zhao DY, Ford PC, Zhang F (2012) Small 8:3800–3805. https://doi.org/10.1002/smll.201201213

    Article  PubMed  CAS  Google Scholar 

  38. Wecksler SR, Mikhailovsky A, Korystov D, Buller F, Kannan R, Tan LS, Ford PC (2007) Inorg Chem 46:395–402. https://doi.org/10.1021/ic0607336

    Article  PubMed  CAS  Google Scholar 

  39. Shiue TW, Chen YH, Wu CM, Singh G, Chen HY, Hung CH, Liaw WF, Wang YM (2012) Inorg Chem 51:5400–5408. https://doi.org/10.1021/ic300379u

    Article  PubMed  CAS  Google Scholar 

  40. Lakowski B, Hekimi S (1996) Science 272:1010–1013

    Article  PubMed  CAS  Google Scholar 

  41. Halaschek-Wiener J, Khattra JS, McKay S, Pouzyrev A, Stott JM, Yang GS, Holt RA, Jones SJM, Marra MA, Brooks-Wilson AR, Riddle DL (2005) Genome Res 15:603–615. https://doi.org/10.1101/gr.3274805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Dong MQ, Venable JD, Au N, Xu T, Park SK, Cociorva D, Johnson JR, Dillin A, Yates JR (2007) Science 317:660–663. https://doi.org/10.1126/science.1139952

    Article  PubMed  CAS  Google Scholar 

  43. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Nature 424:277–284. https://doi.org/10.1038/nature01789

    Article  PubMed  CAS  Google Scholar 

  44. Van Raamsdonk JM, Hekimi S (2012) Proc Natl Acad Sci USA 109:5785–5790. https://doi.org/10.1073/pnas.1116158109

    Article  PubMed  PubMed Central  Google Scholar 

  45. Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ (2000) Science 289:1567–1569

    Article  PubMed  CAS  Google Scholar 

  46. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Nature 530:184–189. https://doi.org/10.1038/nature16932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Nature 479:232–236. https://doi.org/10.1038/nature10600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Nat Protoc 4:1798–1806. https://doi.org/10.1038/nprot.2009.191

    Article  PubMed  CAS  Google Scholar 

  49. Samuelson AV, Carr CE, Ruvkun G (2007) Genes Dev 21:2976–2994. https://doi.org/10.1101/gad.1588907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) Nucleic Acids Res 45:D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  PubMed  CAS  Google Scholar 

  51. Walter MR, Dzul SP, Rodrigues AV, Stemmler TL, Telser J, Conradie J, Ghosh A, Harrop TC (2016) J Am Chem Soc 138:12459–12471. https://doi.org/10.1021/jacs.6b05896

    Article  PubMed  CAS  Google Scholar 

  52. Rhine MA, Rodrigues AV, Urbauer RJB, Urbauer JL, Stemmler TL, Harrop TC (2014) J Am Chem Soc 136:12560–12563. https://doi.org/10.1021/ja5064444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lee HM, Chiou SJ (2009) Acta Crystallogr Sect E Struct Rep 65:m1600. https://doi.org/10.1107/S1600536809048065

    Article  CAS  Google Scholar 

  54. Chen YJ, Ku WC, Feng LT, Tsai ML, Hsieh CH, Hsu WH, Liaw WF, Hung CH, Chen YJ (2008) J Am Chem Soc 130:10929–10938. https://doi.org/10.1021/ja711494m

    Article  PubMed  CAS  Google Scholar 

  55. Tseng YT, Chen CH, Lin JY, Li BH, Lu YH, Lin CH, Chen HT, Weng TC, Sokaras D, Chen HY, Soo YL, Lu TT (2015) Chem Eur J 21:17570–17573. https://doi.org/10.1002/chem.201503176

    Article  PubMed  CAS  Google Scholar 

  56. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Nat Protoc 4:1798–1806. https://doi.org/10.1038/nprot.2009.191

    Article  PubMed  CAS  Google Scholar 

  57. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) Genome Biol. https://doi.org/10.1186/gb-2013-14-4-r36

    Article  PubMed  PubMed Central  Google Scholar 

  58. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Nat Biotechnol 31:46–53. https://doi.org/10.1038/nbt.2450

    Article  PubMed  CAS  Google Scholar 

  59. Jovaisaite V, Mouchiroud L, Auwerx J (2014) J Exp Biol 217:137–143. https://doi.org/10.1242/jeb.090738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gallo M, Park D, Riddle DL (2011) Mech Ageing Dev 132:515–518. https://doi.org/10.1016/j.mad.2011.08.004

    Article  PubMed  CAS  Google Scholar 

  61. Hesp K, Smant G, Kammenga JE (2015) Exp Gerontol 72:1–7. https://doi.org/10.1016/j.exger.2015.09.006

    Article  PubMed  CAS  Google Scholar 

  62. Benedetti C, Haynes CM, Yang Y, Harding HP, Ron D (2006) Genetics 174:229–239. https://doi.org/10.1534/genetics.106.061580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lapierre LR, Hansen M (2012) Trends Endocrinol Metab 23:637–644. https://doi.org/10.1016/j.tem.2012.07.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hoogewijs D, Geuens E, Dewilde S, Vierstraete A, Moens L, Vinogradov S, Vanfleteren JR (2007) BMC Genom. https://doi.org/10.1186/1471-2164-8-356

    Article  Google Scholar 

  65. Gami MS, Wolkow CA (2006) Aging Cell 5:31–37. https://doi.org/10.1111/j.1474-9726.2006.00188.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Heimbucher T, Liu Z, Bossard C, McCloskey R, Carrano AC, Riedel CG, Tanasa B, Klammt C, Fonslow BR, Riera CE, Lillemeier BF, Kemphues K, Yates JR 3rd, O’Shea C, Hunter T, Dillin A (2015) Cell Metab 22:151–163. https://doi.org/10.1016/j.cmet.2015.06.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhang M, Poplawski M, Yen K, Cheng H, Bloss E, Zhu X, Patel H, Mobbs CV (2009) PLoS Biol 7:e1000245. https://doi.org/10.1371/journal.pbio.1000245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Okuyama T, Inoue H, Ookuma S, Satoh T, Kano K, Honjoh S, Hisamoto N, Matsumoto K, Nishida E (2010) J Biol Chem 285:30274–30281. https://doi.org/10.1074/jbc.M110.146274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Wolff S, Ma H, Burch D, Maciel GA, Hunter T, Dillin A (2006) Cell 124:1039–1053. https://doi.org/10.1016/j.cell.2005.12.042

    Article  PubMed  CAS  Google Scholar 

  70. Kenyon CJ (2010) Nature 464:504–512. https://doi.org/10.1038/nature08980

    Article  PubMed  CAS  Google Scholar 

  71. Burkewitz K, Zhang Y, Mair WB (2014) Cell Metab 20:10–25. https://doi.org/10.1016/j.cmet.2014.03.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. An JH, Blackwell TK (2003) Genes Dev 17:1882–1893. https://doi.org/10.1101/gad.1107803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Steinbaugh MJ, Narasimhan SD, Robida-Stubbs S, Moronetti Mazzeo LE, Dreyfuss JM, Hourihan JM, Raghavan P, Operana TN, Esmaillie R, Blackwell TK (2015) Elife. https://doi.org/10.7554/elife.07836

    Article  PubMed  PubMed Central  Google Scholar 

  74. Savory FR, Sait SM, Hope IA (2011) Plos One. https://doi.org/10.1371/journal.pone.0024550

    Article  PubMed  PubMed Central  Google Scholar 

  75. Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M (2015) Free Radical Biol Med 88:290–301. https://doi.org/10.1016/j.freeradbiomed.2015.06.008

    Article  CAS  Google Scholar 

  76. Mertenskotter A, Keshet A, Gerke P, Paul RJ (2013) Cell Stress Chaperon 18:293–306. https://doi.org/10.1007/s12192-012-0382-y

    Article  CAS  Google Scholar 

  77. Xiao R, Zhang B, Dong YM, Gong JK, Xu T, Liu JF, Xu XZS (2013) Cell 152:806–817. https://doi.org/10.1016/j.cell.2013.01.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Chen XY, Chalfie M (2015) J Neurosci 35:2200–2212. https://doi.org/10.1523/Jneurosci.4082-14.2015

    Article  PubMed  CAS  Google Scholar 

  79. Shaw WM, Luo S, Landis J, Ashraf J, Murphy CT (2007) Curr Biol 17:1635–1645. https://doi.org/10.1016/j.cub.2007.08.058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kaplan REW, Chen YT, Moore BT, Jordan JM, Maxwell CS, Schindler AJ, Baugh LR (2015) Plos Genet. https://doi.org/10.1371/journal.pgen.1005731

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nanji M, Hopper NA, Gems D (2005) Aging Cell 4:235–245. https://doi.org/10.1111/j.1474-9726.2005.00166.x

    Article  PubMed  CAS  Google Scholar 

  82. Papp D, Csermely P, Soti C (2012) Plos Pathog. https://doi.org/10.1371/journal.ppat.1002673

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hansen M, Hsu AL, Dillin A, Kenyon C (2005) PLoS Genet 1:119–128. https://doi.org/10.1371/journal.pgen.0010017

    Article  PubMed  CAS  Google Scholar 

  84. Houthoofd K, Fidalgo MA, Hoogewijs D, Braeckman BP, Lenaerts I, Brys K, Matthijssens F, De Vreese A, Van Eygen S, Munoz MJ, Vanfleteren JR (2005) Aging Cell 4:87–95. https://doi.org/10.1111/j.1474-9728.2005.00150.x

    Article  PubMed  CAS  Google Scholar 

  85. Hashimoto Y, Ookuma S, Nishida E (2009) Genes Cells 14:717–726. https://doi.org/10.1111/j.1365-2443.2009.01306.x

    Article  PubMed  CAS  Google Scholar 

  86. Chiang WC, Ching TT, Lee HC, Mousigian C, Hsu AL (2012) Cell 148:322–334. https://doi.org/10.1016/j.cell.2011.12.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Lopez AL, Chen J, Joo HJ, Drake M, Shidate M, Kseib C, Arur S (2013) Dev Cell 27:227–240. https://doi.org/10.1016/j.devcel.2013.09.008

    Article  PubMed  CAS  Google Scholar 

  88. Nakdimon I, Walser M, Frohli E, Hajnal A (2012) Plos Genet. https://doi.org/10.1371/journal.pgen.1002881

    Article  PubMed  PubMed Central  Google Scholar 

  89. McQuary PR, Liao CY, Chang JT, Kumsta C, She XY, Davis A, Chu CC, Gelino S, Gomez-Amaro RL, Petrascheck M, Brill LM, Ladiges WC, Kennedy BK, Hansen M (2016) Cell Rep 14:2059–2067. https://doi.org/10.1016/j.celrep.2016.02.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Moser SC, von Elsner S, Bussing I, Alpi A, Schnabel R, Gartner A (2009) PLoS Genet 5:e1000451. https://doi.org/10.1371/journal.pgen.1000451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Chen D, Thomas EL, Kapahi P (2009) PLoS Genet 5:e1000486. https://doi.org/10.1371/journal.pgen.1000486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Fukuyama M, Sakuma K, Park R, Kasuga H, Nagaya R, Atsumi Y, Shimomura Y, Takahashi S, Kajiho H, Rougvie A, Kontani K, Katada T (2012) Biol Open 1:929–936. https://doi.org/10.1242/bio.2012836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support on confocal microscope from the Department of Bioscience Technology at Chung Yuan Christian University (Mr. Jhe-Jhih Lin) and the Department of Biological Science and Technology at National Chiao Tung University, and on ICP-MS from the Department of Biomedical Engineering and Environmental Science at National Tsing Hua University. We are indebted to the facilities of the C. elegans Core Facility Taiwan. We also thank the Ministry of Science and Technology (Taiwan) for financial support by Grant MOST 102-2113-M-033-009-MY2, MOST 103-2632-M-033-001-MY3, MOST 104-2113-M-033-005-MY2, MOST 106-2113-M-007-028-MY2. We also thank Dr. Lawrence Yu-Min Liu for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yung-Jen Chuang, Horng-Dar Wang, Yun-Ming Wang, Hsien-Da Huang, Tsai-Te Lu or Wen-Feng Liaw.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 853 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HW., Lin, YH., Lin, MH. et al. Extension of C. elegans lifespan using the ·NO-delivery dinitrosyl iron complexes. J Biol Inorg Chem 23, 775–784 (2018). https://doi.org/10.1007/s00775-018-1569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1569-1

Keywords

Navigation