Advertisement

Are cucurbiturils better drug carriers for bent metallocenes? Insights from theory

  • Dhurairajan SenthilnathanEmail author
  • Rajadurai Vijay Solomon
  • Shanmugam Kiruthika
  • Ponnambalam Venuvanalingam
  • Mahesh Sundararajan
Original Paper

Abstract

Bent metallocenes (BM) have anti-tumor properties but they face a serious drug efficacy problem due to poor aqueous solubility and rapid hydrolysis under physiological conditions. These two problems can be fixed by encapsulating them in host molecules such as cyclodextrin (CD), cucurbituril (CB) etc. Experimentally, CD-BM, CB-BM host–guest complexes have been investigated to check the efficiency of the drug delivery and efficiency of the encapsulated drug. CB has been reported to be a better host than CD but the reasons for this has not been figured out. This can be done by finding out the mechanism of binding and the nature of the binding forces in both the inclusion complexes. This is exactly done here by performing a DFT study at BP86/TZP level on CB-BM host–guest systems. For comparison CD-BM with β-cyclodextrin as host have been studied. Four BMs (Cp2MCl2, M=Ti, V, Nb, Mo) and their corresponding cations (Cp2MCl+, Cp2M2+) are chosen as guests and they are encapsulated into cucurbit-[6]-uril (CB[6]) and cucurbit-[7]-uril(CB[7]) host systems. Computations reveal that CB[7] accommodates well the BMs over CB[6] due to their larger cavity size and also CB[7] is found to be a better host than β-cyclodextrin. BMs enter vertically rather than horizontally into the CB cavity. The reversible binding of BMs within CB[7] is controlled by various non-bonding interactions and mainly by hydrogen bonding between the portal oxygen atoms and Cp protons as revealed by QTAIM analysis. On the other hand, the interaction between the wall nitrogen atoms in CB[7] and chlorine atoms attached to the metal in BM strengthens the M–Cl bonds that prevents rapid hydrolysis of M–Cl and M–Cp bonds saving the drug. Comparatively, BMs experience less electrostatic attraction and more Pauli repulsion within β-cyclodextrin cavity and this affects the drug binding with CD. This makes β-cyclodextrin a less suitable drug carrier for BMs than CBs. Among the four BMs, niobocene binds strongly and titanocene binds weakly with CBs. EDA clearly shows that all the interactions between the guest and host are non-covalent in nature and electrostatic interactions outperform high-repulsion resulting in stable complexes. Cations form stronger complexes than neutral BMs. FMO analysis reveals that neutral BMs are less reactive compared to their cations and complexes are more reactive in CB[6] environment due to excess strain. QTAIM analysis helps to bring out the newer insights in these types of host–guest systems.

Keywords

Anticancer drug Bent metallocenes Cucurbituril Cyclodextrin DFT EDA QTAIM 

Notes

Acknowledgements

P. V. thanks, Council for Scientific and Industrial Research (CSIR), India for the award of EmeritusScientistship (Ref. no. 21(0936)/12/EMR–II). DS acknowledges the support and continuous encouragement from Centre for Research and development, PRIST University, Vallam campus, Thanjavur. RVS acknowledges the support and encouragement from the Department of Chemistry and the management of Madras Christian College (Autonomous), Chennai.

Supplementary material

775_2018_1547_MOESM1_ESM.pdf (721 kb)
Supplementary material 1 (PDF 721 kb)

References

  1. 1.
    Gasser G, Ott I, Metzler-Nolte N (2010) J Med Chem 54:3–25CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dowling CM, Claffey J, Cuffe S, Fichtner I, Pampillon C, Sweeney NJ, Strohfeldt K, Watson RG, Tacke M (2008) Lett Drug Des Discov 5:141–144CrossRefGoogle Scholar
  3. 3.
    Hogan M, Cotter J, Claffey J, Gleeson B, Wallis D, O’Shea D, Tacke M (2008) Helv Chim Acta 91:1787–1797CrossRefGoogle Scholar
  4. 4.
    Hogan M, Gleeson B, Tacke M (2010) Lett Drug Des Discov 7:310–317CrossRefGoogle Scholar
  5. 5.
    Strohfeldt K, Tacke M (2008) Chem Soc Rev 37:1174–1187CrossRefPubMedGoogle Scholar
  6. 6.
    Pampillón C, Sweeney NJ, Strohfeldt K, Tacke M (2007) J Organomet Chem 692:2153–2159CrossRefGoogle Scholar
  7. 7.
    Senthilnathan D, Vaideeswaran S, Venuvanalingam P (2011) JMol Model 17:465–475CrossRefGoogle Scholar
  8. 8.
    Rahel PE, Yvonne H, Stefan S (2017) CHIMIA Int J Chem 71:120–123.  https://doi.org/10.2533/chimia.2017.120 CrossRefGoogle Scholar
  9. 9.
    Cini M, Bradshaw TD, Woodward S (2017) Chem Soc Rev 46:1040–1051CrossRefPubMedGoogle Scholar
  10. 10.
    Tinoco AD, Saxena M, Sharma S, Noinaj N, Delgado Y (2016) J Am Chem Soc 138:5659–5665CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Senthilnathan D, Kalaiselvan A, Vedha SA, Venuvanalingam P (2014) RSC Adv 4:9556–9563CrossRefGoogle Scholar
  12. 12.
    Bonnet G, Kubicki MM, Moise C, Lazzaroni R, Salvadori P, Vitulli G (1992) Organometallics 11:964–967CrossRefGoogle Scholar
  13. 13.
    Collins RA, Russell AF, Scott RTW, Bernardo R, Doremaele G, Berthoud A, Mountford R (2017) Organometallics 36:2167–2181CrossRefGoogle Scholar
  14. 14.
    Musgrave RA, Russell AD, Hayward DW, Whittell GR, Lawrence PG, Gates PJ, Green JC, Manners I (2017) Nat Chem 9:743–750CrossRefGoogle Scholar
  15. 15.
    Erker G (1999) Chem Soc Rev 28:307–314CrossRefGoogle Scholar
  16. 16.
    Erker G, Kehr G, Fröhlich R (2004) J Organomet Chem 689:1402–1412CrossRefGoogle Scholar
  17. 17.
    Gasser G, Metzler-Nolte N (2012) Curr Opin Chem Biol 16:84–91CrossRefPubMedGoogle Scholar
  18. 18.
    Green JC (1998) Chem Soc Rev 27:263–272CrossRefGoogle Scholar
  19. 19.
    Erxleben A (2005) Inorg Chem 44:1082–1094CrossRefPubMedGoogle Scholar
  20. 20.
    Güette-Fernández JR, Meléndez E, Maldonado-Rojas R, Ortega-Zúñiga C, Olivero-Verbel J, Parés-Matos EI (2017) J Mol Graph Model 75:250–265CrossRefPubMedGoogle Scholar
  21. 21.
    Abeysinghe PM, Harding MM (2007) Dalton Trans. 3474–3482.  https://doi.org/10.1039/B707440A
  22. 22.
    Toney JH, Marks TJ (1985) J Am Chem Soc 107:947–953CrossRefGoogle Scholar
  23. 23.
    Murray JH, Harding MM (1994) J Med Chem 37:1936–1941CrossRefPubMedGoogle Scholar
  24. 24.
    Ravera M, Cassino C, Monti E, Gariboldi M, Osella D (2005) J Inorg Biochem 99:2264–2269CrossRefPubMedGoogle Scholar
  25. 25.
    Loza-Rosas SA, Saxena M, Delgado Y, Gaur K, Pandrala M, Tinoco AD (2017) Metallomics 9:346–356CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kuo LY, Kanatzidis MG, Sabat M, Tipton AL, Marks TJ (1991) J Am Chem Soc 113:9027–9045CrossRefGoogle Scholar
  27. 27.
    Waern JB, Dillon CD, Harding MM (2005) J Med Chem 48:2093–2099CrossRefPubMedGoogle Scholar
  28. 28.
    Waern JB, Harding MM (2004) J Organomet Chem 689:4655–4668CrossRefGoogle Scholar
  29. 29.
    Waern JB, Harding MM (2004) Inorg Chem 43:206–213CrossRefPubMedGoogle Scholar
  30. 30.
    Mock WL, Shih NY (1986) J Org Chem 51:4440–4446CrossRefGoogle Scholar
  31. 31.
    Garmann D, Warnecke A, Kalayda GV, Kratz F, Jaehde U (2008) J Control Release 131:100–106CrossRefPubMedGoogle Scholar
  32. 32.
    Dibama HM, Clarot I, Fontanay S, Salem AB, Mourer M, Finance C, Duval RE, Regnouf-de-Vains JB (2009) Bio Org Med Chem Lett 19:2679–2682CrossRefGoogle Scholar
  33. 33.
    Gasser G, Ott I, Metzler-Nolte N (2011) J Med Chem 54:3–25CrossRefPubMedGoogle Scholar
  34. 34.
    Xu F, Li H, Luo YL, Tang W (2017) ACS Appl Mater Interfaces 9:5181–5192CrossRefPubMedGoogle Scholar
  35. 35.
    Venkataramanan NS (2017) Suvitha. J Phys Chem B 121:4733–4744CrossRefPubMedGoogle Scholar
  36. 36.
    Uekama K, Hirayama F, Irie T (1998) Chem Rev 98:2045–2076CrossRefPubMedGoogle Scholar
  37. 37.
    Buck DP, Abeysinghe PM, Cullinane C, Day AI, Collins JC, Harding MM (2008) Dalton Trans. 2328–2334.  https://doi.org/10.1039/B718322D
  38. 38.
    Pan S, Mondal S, Chattaraj PK (2013) New J Chem 37:2492–2499CrossRefGoogle Scholar
  39. 39.
    Barooah N, Kunwar A, Khurana R, Bhasikuttan AC, Mohanty J (2017) Chem Asian J 12:122–131CrossRefPubMedGoogle Scholar
  40. 40.
    Abdolmaleki A, Ghasemi F, Ghasemi JB (2017) Chem Biol Drug Des 89:257–268CrossRefPubMedGoogle Scholar
  41. 41.
    Ahmed SA, Maity B, Duley SS, Seth D (2017) J Photochem Photobiol B 168:132–141CrossRefPubMedGoogle Scholar
  42. 42.
    Rafael RC, Colilla M, Vallet-Regí M (2017) Expert Opin Drug Deliv 14:229–243CrossRefGoogle Scholar
  43. 43.
    Pereira CC, Nolasco M, Braga SS, Paz FAA, Ribeiro-Claro P, Pillinger M, Goncalves IS (2007) Organometallics 26:4220–4956CrossRefGoogle Scholar
  44. 44.
    Metzler-Nolte N (2010) “Biomedical applications of organometal–peptide conjugates” Medicinal organometallic chemistry. Springer, Berlin, pp 195–217CrossRefGoogle Scholar
  45. 45.
    Yang P, Guo M (1999) Coord Chem Rev 185:189–211CrossRefGoogle Scholar
  46. 46.
    Chen X, Zhou L (2010) J Mol Struct THEOCHEM 940:45–49CrossRefGoogle Scholar
  47. 47.
    Mokdsi G, Harding MM (1998) J Organomet Chem 565:29–35CrossRefGoogle Scholar
  48. 48.
    Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) J Am Chem Soc 127:15959–15967CrossRefPubMedGoogle Scholar
  49. 49.
    Jeon YJ, Kim SY, Ko YH, Sakamoto S, Yamaguchi K, Kim K (2005) Org Biomol Chem 3:2122–2125CrossRefPubMedGoogle Scholar
  50. 50.
    Kim J, Ahn Y, Park KM, Kim Y, Ko YH, Oh DH, Kim K (2007) Angew Chem Int Ed 46:7393–7395CrossRefGoogle Scholar
  51. 51.
    Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44:4844–4870CrossRefGoogle Scholar
  52. 52.
    Gossens C, Tavernelli I, Rothlisberger U (2005) Chimia Int J Chem 59:81–84CrossRefGoogle Scholar
  53. 53.
    McLaughlin ML, Cronan JM Jr, Schaller TR, Snelling RD (1990) J Am Chem Soc 112:8949–8952CrossRefGoogle Scholar
  54. 54.
    Mokdsi G, Harding MM (2001) J Inorg Biochem 83:205–209CrossRefPubMedGoogle Scholar
  55. 55.
    Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRefGoogle Scholar
  56. 56.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  57. 57.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  58. 58.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefPubMedGoogle Scholar
  59. 59.
    Valeev EF, Schaefer HF (1998) J Chem Phys 108:7197–7201CrossRefGoogle Scholar
  60. 60.
    van Lenthe E, Ehlers A, Baerends EJ (1999) J Chem Phys 110:8943–8953CrossRefGoogle Scholar
  61. 61.
    Wolff S, Ziegler T, Van Lenthe E, Baerends E (1999) J Chem Phys 110:7689–7698CrossRefGoogle Scholar
  62. 62.
    Morokuma K (1971) J Chem Phys 55:1236–1244CrossRefGoogle Scholar
  63. 63.
    Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10CrossRefGoogle Scholar
  64. 64.
    Hopffgarten MV, Frenking G (2012) WIRESs Comput Mol Sci 2:43 ((Eds. 121)) CrossRefGoogle Scholar
  65. 65.
    Biegler-König F, Schönbohm J (2002) J Comput Chem 23:1489–1494CrossRefPubMedGoogle Scholar
  66. 66.
    Vedha SA, Solomon RV, Venuvanalingam P (2013) J Phys Chem A 117:3529–3538CrossRefPubMedGoogle Scholar
  67. 67.
    Senthilnathan D, Venuvanalingam P (2011) Eur J Inorg Chem 18:2842–2855CrossRefGoogle Scholar
  68. 68.
    Bader RFW (1998) J Phys Chem A 102:7314–7323CrossRefGoogle Scholar
  69. 69.
    Bader RFW (1985) Acc Chem Res 18:9–15CrossRefGoogle Scholar
  70. 70.
    Bader RFW (2009) J Phys Chem A 113:10391–10396CrossRefPubMedGoogle Scholar
  71. 71.
    Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, New YorkGoogle Scholar
  72. 72.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2004) Gaussian 03, Revision C02. Gaussian, Inc., WallingfordGoogle Scholar
  73. 73.
    Sundararajan M (2013) J Phys Chem B 117:13409–13417CrossRefPubMedGoogle Scholar
  74. 74.
    Sundararajan M, Vivek S, Bandyopadhyay T, Ghosh SK (2012) J Phys Chem A 116:4388–4395CrossRefPubMedGoogle Scholar
  75. 75.
    Sadhu B, Sundararajan M, Bandyopadhyay T (2016) Inorg Chem 55:598–609CrossRefPubMedGoogle Scholar
  76. 76.
    Sundararajan M, Solomon RV, Ghosh SK, Venuvanalingam P (2011) RSC Adv 1:1333–1341CrossRefGoogle Scholar
  77. 77.
    Shahi A, Arunan E (2014) Phys Chem Chem Phys 16:22935–22952CrossRefPubMedGoogle Scholar
  78. 78.
    Braga SS, Goncalves IS, Pillinger M, Ribeiro-Claro P, Teixeira-Dias JJC (2001) J Organomet Chem 623:11–16CrossRefGoogle Scholar
  79. 79.
    Braga SS, Marques MM, Sousa JB, Pillinger M, Teixeira-Dias JJC, Goncalves IS (2005) J Organomet Chem 690:2905–2912CrossRefGoogle Scholar
  80. 80.
    Braga SS (2010) Curr Org Chem 14:1356–1361CrossRefGoogle Scholar
  81. 81.
    Pereira CCL, Nolasco M, Braga SS, Almeida Paz FZ, Ribeiro-Claro P, Pillinger M, Goncüalves IS (2007) Organomettalics 26:4220–4228CrossRefGoogle Scholar
  82. 82.
    Riviş A, Hădărugă NG, Gârban Z, Hădărugă DI (2012) Chem Cen J 6:129–139Google Scholar
  83. 83.
    Saenger W, Jacob J, Gessler K, Steiner T, Hoffmann D, Sanbe H, Koizumi K, Smith SM, Takaha T (1998) Chem Rev 98:1787–1802CrossRefPubMedGoogle Scholar
  84. 84.
    Hedges AR (1998) Chem Rev 98:2035–2044CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  • Dhurairajan Senthilnathan
    • 1
    Email author
  • Rajadurai Vijay Solomon
    • 2
  • Shanmugam Kiruthika
    • 3
  • Ponnambalam Venuvanalingam
    • 3
  • Mahesh Sundararajan
    • 4
  1. 1.Center for Computational Chemistry, CRDPRIST UniversityThanjavurIndia
  2. 2.Department of ChemistryMadras Christian College (Autonomous)ChennaiIndia
  3. 3.Theoretical and Computational Chemistry Laboratory, School of ChemistryBharathidasan UniversityTiruchirappalliIndia
  4. 4.Theoretical Chemistry SectionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations