Advertisement

Formation of chelate structure between His-Met dipeptide and diaqua-cisplatin complex; DFT/PCM computational study

  • Michal Maixner
  • Helio F. Dos Santos
  • Jaroslav V. Burda
Original Paper

Abstract

Interaction of cisplatin in activated diaqua-form with His-Met dipeptide is explored using DFT approach with PCM model. First the conformation space of the dipeptide is explored to find the most stable structure (labeled 0683). Several functionals with double-zeta basis set are used for optimization and obtained order of conformers is confirmed by the CCSD(T) single-point calculations. Supermolecular model is used to determine reaction coordinate for the replacement of aqua ligands consequently by N-site of histidine and S-site of methionine and reversely. Despite the monoadduct of Pt–S(Met) is thermodynamically less stable this reaction passes substantially faster (by several orders of magnitude) than coordination of cisplatin to histidine. The consequent chelate formation occurs relatively fast with energy release up to 12 kcal mol−1.

Keywords

Computational chemistry Density functional theory Thermodynamics Anticancer drug Heavy metal 

Notes

Acknowledgements

Authors (JVB and MM) are grateful for supporting this study to the Grant Agency of Czech Republic Project no 16-06240S. We would also like to acknowledge a generous access to computational facilities of the National Grid Infrastructure MetaCentrum, provided under the program ‘Projects of Large Infrastructure for Research, Development, and Innovations’ (LM2010005).

Supplementary material

775_2018_1536_MOESM1_ESM.pdf (97 kb)
Supplementary material 1 (PDF 97 kb)

References

  1. 1.
    Eastman A (1999) In: Lippert B (ed) Cisplatin. Wiley-VCH, Weinheim, pp 111–134Google Scholar
  2. 2.
    Hindmarsh K, House DA, Turnbull MM (1997) Inorg Chim Acta 257:11–18CrossRefGoogle Scholar
  3. 3.
    Miller SE, House DA (1991) Inorg Chim Acta 187:125–132CrossRefGoogle Scholar
  4. 4.
    Miller SE, Gerard KJ, House DA (1991) Inorg Chim Acta 190:135–144CrossRefGoogle Scholar
  5. 5.
    Zimmermann T, Leszczynski J, Burda JV (2011) J Mol Model 17:2385–2393PubMedCrossRefGoogle Scholar
  6. 6.
    Burda JV, Zeizinger M, Leszczynski J (2005) J Comput Chem 26:907–914PubMedCrossRefGoogle Scholar
  7. 7.
    Pascoe JM, Roberts JJ (1974) Biochem Pharmacol 23:1345–1357PubMedCrossRefGoogle Scholar
  8. 8.
    Peleg-Shulman T, Najajreh Y, Gibson D (2002) J Inorg Biochem 91:306–311PubMedCrossRefGoogle Scholar
  9. 9.
    Kartalou M, Essigmann JM (2001) Mutat Res Fundam Mol Mech Mutagen 478:1–21CrossRefGoogle Scholar
  10. 10.
    Fojta M, Pivonkova H, Brazdova M, Kovarova L, Palecek E, Pospisilova S, Vojtesek B, Kasparkova J, Brabec V (2003) Biochem Pharmacol 65:1305–1316PubMedCrossRefGoogle Scholar
  11. 11.
    Pivonkova H, Pecinka P, Ceskova P, Fojta M (2006) FEBS J 273:4693–4706PubMedCrossRefGoogle Scholar
  12. 12.
    Donahue BA, Augot M, Bellon SF, Treiber DK, Toney JH, Lippard SJ, Essigmann JM (1990) Biochemistry 29:5872–5880PubMedCrossRefGoogle Scholar
  13. 13.
    Andrews PA, Jones JA (1991) Cancer Commun 3:1–10CrossRefGoogle Scholar
  14. 14.
    Burger AM, Double JA, Newell DR (1997) Eur J Cancer 33:638–644PubMedCrossRefGoogle Scholar
  15. 15.
    Zamble DB, Lippard SJ (1999) In: Lippert B (ed) Cisplatin. Wiley-VCH, Weinheim, pp 73–110Google Scholar
  16. 16.
    Lippert B (1999) Cisplatin: chem. and biochemistry of a leading anticancer drug. Wiley-VCH, WienheimCrossRefGoogle Scholar
  17. 17.
    Zimmermann T, Zeizinger M, Burda JV (2005) J Inorg Biochem 99:2184–2196PubMedCrossRefGoogle Scholar
  18. 18.
    Zimmermann T, Chval Z, Burda JV (2009) J Phys Chem B 113:3139–3150.  https://doi.org/10.1021/jp807645x PubMedCrossRefGoogle Scholar
  19. 19.
    Zimmermann T, Burda JV (2010) Dalton Trans 39:1295–1301PubMedCrossRefGoogle Scholar
  20. 20.
    Norman RE, Ranford JD, Sadler PJ (1992) Inorg Chem 31:877–888CrossRefGoogle Scholar
  21. 21.
    Williams KM, Rowan C, Mitchell J (2004) Inorg Chem 43:1190–1196PubMedCrossRefGoogle Scholar
  22. 22.
    Appleton TG, Connor JW, Hall JR (1988) Inorg Chem 27:130–137CrossRefGoogle Scholar
  23. 23.
    Wei HY, Liu Q, Lin J, Jiang PJ, Guo ZJ (2004) Inorg Chem Commun 7:792–794CrossRefGoogle Scholar
  24. 24.
    Riley CM, Sternson LA, Repta AJ (1983) J Pharm Sci 72:351–355PubMedCrossRefGoogle Scholar
  25. 25.
    Reedijk J (1999) Chem Rev 99:2499–2510PubMedCrossRefGoogle Scholar
  26. 26.
    Vrana O, Brabec V (2002) Biochemistry 41:10994–10999PubMedCrossRefGoogle Scholar
  27. 27.
    Manka S, Becker F, Hohage O, Sheldrick WS (2004) J Inorg Biochem 98:1947–1956PubMedCrossRefGoogle Scholar
  28. 28.
    Hohage O, Sheldrick WS (2006) J Inorg Biochem 100:1506–1513PubMedCrossRefGoogle Scholar
  29. 29.
    Appleton TG, Connor JW, Hall JR, Prenzler PD (1989) Inorg Chem 28:2030–2037CrossRefGoogle Scholar
  30. 30.
    Bose RN, Ghosh SK, Moghaddas S (1997) J Inorg Biochem 65:199–205PubMedCrossRefGoogle Scholar
  31. 31.
    Lau JKC, Deubel DV (2005) Chem Eur J 11:2849–2855PubMedCrossRefGoogle Scholar
  32. 32.
    Hagrman D, Goodisman J, Souid A-K (2004) J. Pharmacol Exp Ther 308:658–666PubMedCrossRefGoogle Scholar
  33. 33.
    Dabrowiak JC, Goodisman J, Souid A-K (2002) Drug Metab Dispos 30:1378–1384PubMedCrossRefGoogle Scholar
  34. 34.
    Dedon PC, Borch RF (1987) Biochem Pharmacol 36:1955–1964PubMedCrossRefGoogle Scholar
  35. 35.
    Bose RN, Moghaddas S, Weaver EL, Cox EH (1995) Inorg Chem 34:5878–5883CrossRefGoogle Scholar
  36. 36.
    Zou J, Yang XD, An F, Wang K (1998) J Inorg Biochem 70:227–232PubMedCrossRefGoogle Scholar
  37. 37.
    Da Silva VJ, Costa LAS, Dos Santos HF (2008) Int J Quantum Chem 108:401–414CrossRefGoogle Scholar
  38. 38.
    Chang GR, Zhou LX, Chen D (2006) Chin J Struct Chem 25:533–542Google Scholar
  39. 39.
    Robertazzi A, Platts JA (2004) J Comput Chem 25:1060–1067PubMedCrossRefGoogle Scholar
  40. 40.
    Robertazzi A, Platts JA (2005) Inorg Chem 44:267–274PubMedCrossRefGoogle Scholar
  41. 41.
    Robertazzi A, Platts JA (2006) Chem Eur J 12:5747–5756PubMedCrossRefGoogle Scholar
  42. 42.
    Wysokinski R, Hernik K, Szostak R, Michalska D (2007) Chem Phys 333:37–48CrossRefGoogle Scholar
  43. 43.
    Yuan QH, Zhou LX (2007) Chin J Struct Chem 26:962–972Google Scholar
  44. 44.
    Erturk H, Hofmann A, Puchta R, van Eldik R (2007) Dalton Trans 22:2295–2301CrossRefGoogle Scholar
  45. 45.
    Hao L, Zhang Y, Tan HW, Chen GJ (2007) Chem J Chin Univ Chin 28:1160–1164Google Scholar
  46. 46.
    Pavelka M, Lucas MFA, Russo N (2007) Chem Eur J 13:10108–10116PubMedCrossRefGoogle Scholar
  47. 47.
    Pavelka M, Šimánek M, Šponer J, Burda JV (2006) J Phys Chem A 110:4795–4809PubMedCrossRefGoogle Scholar
  48. 48.
    Hofmann A, Jaganyi D, Munro OQ, Liehr G, van Eldik R (2003) Inorg Chem 42:1688–1700PubMedCrossRefGoogle Scholar
  49. 49.
    Zhu HJ, Ziegler T (2006) J Organomet Chem 691:4486–4497CrossRefGoogle Scholar
  50. 50.
    Tsipis AC, Sigalas MP (2002) J Mol Struct (Theochem) 584:235–248CrossRefGoogle Scholar
  51. 51.
    Zhu C, Raber J, Eriksson LA (2005) J Phys Chem B 109:12195–12205PubMedCrossRefGoogle Scholar
  52. 52.
    Song T, Hu P (2006) J Chem Phys 125:091101PubMedCrossRefGoogle Scholar
  53. 53.
    Jia M, Qu W, Yang Z, Chen G (2005) Int J Mod Phys B 19:2939–2949CrossRefGoogle Scholar
  54. 54.
    Zhang Y, Guo Z, You X-Z (2001) J Am Chem Soc 123:9378–9387PubMedCrossRefGoogle Scholar
  55. 55.
    Lau JKC, Deubel DV (2006) J Chem Theory Comput 2:103–106PubMedCrossRefGoogle Scholar
  56. 56.
    Dos Santos HF, Marcial BL, De Miranda CF, Costa LAS, De Almeida WB (2006) J Inorg Biochem 100:1594–1605PubMedCrossRefGoogle Scholar
  57. 57.
    Lopes JF, Menezes VSD, Duarte HA, Rocha WR, De Almeida WB, Dos Santos HF (2006) J Phys Chem B 110:12047–12054PubMedCrossRefGoogle Scholar
  58. 58.
    Costa LA, Hambley TW, Rocha WR, Almeida WB, Dos Santos HF (2006) Int J Quantum Chem 106:2129–2144CrossRefGoogle Scholar
  59. 59.
    Šebesta F, Burda JV (2017) J Inorg Biochem 172:100–109PubMedCrossRefGoogle Scholar
  60. 60.
    Zimmermann T, Burda JV (2009) J Chem Phys 131:135101PubMedCrossRefGoogle Scholar
  61. 61.
    Zeizinger M, Burda JV, Šponer J, Kapsa V, Leszczynski J (2001) J Phys Chem A 105:8086–8092CrossRefGoogle Scholar
  62. 62.
    Burda JV, Zeizinger M, Leszczynski J (2004) J Chem Phys 120:1253–1262PubMedCrossRefGoogle Scholar
  63. 63.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512CrossRefGoogle Scholar
  64. 64.
    Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129CrossRefGoogle Scholar
  65. 65.
    Miertus S, Tomasi J (1982) Chem Phys 65:239–245CrossRefGoogle Scholar
  66. 66.
    Glendening ED, Badenhoop K, Ree AE, Carpenter JE, Bohmann JA, Morales M, Weinhold F (2001). University of Wisconsin, Madison, Wisconsin 53706, WisconsinGoogle Scholar
  67. 67.
    Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221CrossRefGoogle Scholar
  68. 68.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  69. 69.
    Keith TA (2014) http://aim.tkgristmill.com. Accessed 30 Sept 2014
  70. 70.
    Politzer P, Laurence PR, Jayasuriya K (1985) Environ Health Perspect 61:191–202PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Murray et al (2011) WIREs Comput Mol Sci 1:153CrossRefGoogle Scholar
  72. 72.
    Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440CrossRefGoogle Scholar
  73. 73.
    Murray JS, Brinck T, Grice ME, Politzer P (1992) J Mol Struct Theor Chem 256:29–45CrossRefGoogle Scholar
  74. 74.
    Politzer P, Murray JS, Bulat FA (2010) J Mol Model 16:1731PubMedCrossRefGoogle Scholar
  75. 75.
    Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  76. 76.
    Burda JV, Runenberg N, Pyykko P (1998) Chem Phys Lett 288:635–641CrossRefGoogle Scholar
  77. 77.
    Burda JV, Zeizinger M, Sponer J, Leszczynski J (2000) J Chem Phys 113:2224–2232CrossRefGoogle Scholar
  78. 78.
    Wertz DH (1980) J Am Chem Soc 102:5316–5322CrossRefGoogle Scholar
  79. 79.
    Cheng M-J, Nielsen RJ, Goddard Iii WA (2014) Chem Commun 50:10994–10996.  https://doi.org/10.1039/C4CC03067B CrossRefGoogle Scholar
  80. 80.
    Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) J Mol Biol 7:95–99PubMedCrossRefGoogle Scholar
  81. 81.
    Chojnacki H, Kuduk-Jaworska J, Jaroszewicz I, Janski JJ (2009) Pol J Chem 83:1013–1024Google Scholar
  82. 82.
    Melchior A, Martínez JM, Pappalardo RR, Marcos ES (2013) J Chem Theory Comput 9:4562–4573PubMedCrossRefGoogle Scholar
  83. 83.
    Burda JV, Sponer J, Leszczynski J (2000) J Biol Inorg Chem 5:178–188PubMedCrossRefGoogle Scholar
  84. 84.
    Kozelka J, Chottard J-C (1990) Biophys Chem 35:165–178PubMedCrossRefGoogle Scholar
  85. 85.
    Burda JV, Leszczynski J (2003) Inorg Chem 42:7162–7172PubMedCrossRefGoogle Scholar
  86. 86.
    Spiegel K, Carloni P (2004) Abstr Pap Am Chem Soc 227:U1547–U1547Google Scholar
  87. 87.
    Zeizinger M, Burda JV, Leszczynski J (2004) Phys Chem Chem Phys 6:3585–3590CrossRefGoogle Scholar
  88. 88.
    Deubel DV (2005) Abstr Pap Am Chem Soc 230:U2131–U2131Google Scholar
  89. 89.
    Raber J, Zhu C, Eriksson LA (2005) J Phys Chem B 109:11006–11015PubMedCrossRefGoogle Scholar
  90. 90.
    Pavelka M, Burda JV (2007) J Mol Model 13:367–379PubMedCrossRefGoogle Scholar
  91. 91.
    Gkionis K, Mutter ST, Platts JA (2013) RSC Adv 3:4066–4073.  https://doi.org/10.1039/C3RA23041D CrossRefGoogle Scholar
  92. 92.
    Zhu M, Zhou L (2015) Comput Theor Chem 1051:24–34.  https://doi.org/10.1016/j.comptc.2014.10.036 CrossRefGoogle Scholar
  93. 93.
    Ceron-Carrasco JP, Jacquemin D, Cauet E (2012) Phys Chem Chem Phys 14:12457–12464.  https://doi.org/10.1039/C2CP40515F PubMedCrossRefGoogle Scholar
  94. 94.
    Deubel DV (2006) J Am Chem Soc 128:1654–1663PubMedCrossRefGoogle Scholar
  95. 95.
    Froeling CDW, Sheldrick WS (1997) Chem Commun 1737–1738.  https://doi.org/10.1039/A702904G
  96. 96.
    Djuran MI, Dimitrijevic DP, Milinkovic SU, Bugarčic ŽD (2002) Transit Met Chem 27:151–158CrossRefGoogle Scholar
  97. 97.
    Dos Santos HF, Paschoal D, Burda JV (2012) J Phys Chem A 116:11015–11024.  https://doi.org/10.1021/jp307977p PubMedCrossRefGoogle Scholar
  98. 98.
    Dos Santos HF, Paschoal D, Burda JV (2012) Chem Phys Lett 548:64–70.  https://doi.org/10.1016/j.cplett.2012.07.080 CrossRefGoogle Scholar
  99. 99.
    Bradáč O, Zimmermann T, Burda JV (2008) J Mol Model 14:705–716.  https://doi.org/10.1007/s00894-008-0285-0 PubMedCrossRefGoogle Scholar
  100. 100.
    Futera Z, Platts JA, Burda JV (2012) J Comput Chem 33:2092–2101PubMedCrossRefGoogle Scholar
  101. 101.
    Bancroft DP, Lepre CA, Lippard SJ (1990) J Am Chem Soc 112:6860–6871.  https://doi.org/10.1021/ja00175a020 CrossRefGoogle Scholar
  102. 102.
    Kleine M, Wolters D, Sheldrick WS (2003) J Inorg Biochem 97:354–363PubMedCrossRefGoogle Scholar
  103. 103.
    Barnham KJ, Djuran MJ, Murdoch PDS, Sadler PJ (1994) J Chem Soc Chem Commun.  https://doi.org/10.1039/C39940000721 CrossRefGoogle Scholar
  104. 104.
    Djuran MI, Lempers ELM, Reedijk J (1991) Inorg Chem 30:2648–2652CrossRefGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  • Michal Maixner
    • 1
  • Helio F. Dos Santos
    • 2
  • Jaroslav V. Burda
    • 1
  1. 1.Department of Chemical Physics and Optics, Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic
  2. 2.NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química-ICEUniversidade Federal e Juiz de ForaJuiz de ForaBrazil

Personalised recommendations