Skip to main content
Log in

Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe–2S] cluster optical spectra and transfer chemistry

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Human glutaredoxin 5 (Grx5) is one of the core components of the Isc (iron–sulfur cluster) assembly and trafficking machinery, and serves as an intermediary cluster carrier, putatively delivering cluster from the Isu scaffold protein to target proteins. The tripeptide glutathione is intimately involved in this role, providing cysteinyl coordination to the iron center of the Grx5-bound [2Fe–2S] cluster. Grx5 has a well-defined glutathione-binding pocket with protein amino acid residues providing many ionic and hydrogen binding contacts to the bound glutathione. In this report, we investigated the importance of these interactions in cluster chirality and exchange reactivity by systematically perturbing the crucial contacts by use of natural and non-natural amino acid substitutions to disrupt the binding contacts from both the protein and glutathione. Native Grx5 could be reconstituted with all of the glutathione analogs used, as well as other thiol ligands, such as DTT or l-cysteine, by in vitro chemical reconstitution, and the holo proteins were found to transfer [2Fe–2S] cluster to apo ferredoxin 1 at comparable rates. However, the circular dichroism spectra of these derivatives displayed prominent differences that reflect perturbations in local cluster chirality. These studies provided a detailed molecular understanding of glutathione–protein interactions in holo Grx5 that define both cluster spectroscopy and exchange chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Couturier J, Przybyla-Toscano J, Roret T, Didierjean C, Rouhier N (2015) Biochim Biophys Acta 1853:1513–1527

    Article  CAS  PubMed  Google Scholar 

  2. Mühlenhoff U, Gerber J, Richhardt N, Lill R (2003) EMBO J 22:4815–4825

    Article  PubMed  PubMed Central  Google Scholar 

  3. Uzarska MA, Dutkiewicz R, Freibert SA, Lill R, Muhlenhoff U (2013) Mol Biol Cell 24:1830–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Camaschella C, Campanella A, De Falco L, Boschetto L, Merlini R, Silvestri L, Levi S, Iolascon A (2007) Blood 110:1353–1358

    Article  CAS  PubMed  Google Scholar 

  5. Kim KD, Chung WH, Kim HJ, Lee KC, Roe JH (2010) Biochem Biophys Res Commun 392:467–472

    Article  CAS  PubMed  Google Scholar 

  6. Banci L, Brancaccio D, Ciofi-Baffoni S, Del Conte R, Gadepalli R, Mikolajczyk M, Neri S, Piccioli M, Winkelmann J (2014) Proc Natl Acad Sci USA 111:6203–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brancaccio D, Gallo A, Mikolajczyk M, Zovo K, Palumaa P, Novellino E, Piccioli M, Ciofi-Baffoni S, Banci L (2014) J Am Chem Soc 136:16240–16250

    Article  CAS  PubMed  Google Scholar 

  8. Johansson C, Roos AK, Montano SJ, Sengupta R, Filippakopoulos P, Guo K, von Delft F, Holmgren A, Oppermann U, Kavanagh KL (2011) Biochem J 433:303–311

    Article  CAS  PubMed  Google Scholar 

  9. Sen S, Cowan JA (2017) J Biol Inorg Chem 22:1075–1087

    Article  CAS  PubMed  Google Scholar 

  10. Wu S-P, Wu G, Surerus KK, Cowan JA (2002) Biochemistry 41:8876–8885

    Article  CAS  PubMed  Google Scholar 

  11. Xia B, Cheng H, Bandarian V, Reed GH, Markley JL (1996) Biochemistry 35:9488–9495

    Article  CAS  PubMed  Google Scholar 

  12. Jensen KJ, Shelton PT, Pedersen SL (2013) Peptide synthesis and applications. Springer, New York

    Book  Google Scholar 

  13. Jones RN, Shimokoshi K (1983) Appl Spectrosc 37:59–67

    Article  CAS  Google Scholar 

  14. Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Appl Spectrosc 35:271–276

    Article  CAS  Google Scholar 

  15. Moulis JM, Meyer J (1982) Biochemistry 21:4762–4771

    Article  CAS  PubMed  Google Scholar 

  16. Kuzmic P (1996) Anal Biochem 237:260–273

    Article  CAS  PubMed  Google Scholar 

  17. Wachnowsky C, Fidai I, Cowan JA (2016) FEBS Lett. 590:4531–4540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haunhorst P, Berndt C, Eitner S, Godoy JR, Lillig CH (2010) Biochem Biophys Res Commun 394:372–376

    Article  CAS  PubMed  Google Scholar 

  19. Zhang B, Bandyopadhyay S, Shakamuri P, Naik SG, Huynh BH, Couturier J, Rouhier N, Johnson MK (2013) J Am Chem Soc 135:15153–15164

    Article  CAS  PubMed  Google Scholar 

  20. Abdalla M, Dai YN, Chi CB, Cheng W, Cao DD, Zhou K, Ali W, Chen Y, Zhou CZ (2016) Acta Crystallogr Sect F Struct Biol Commun 72:732–737

    Article  CAS  Google Scholar 

  21. Picciocchi A, Saguez C, Boussac A, Cassier-Chauvat C, Chauvat F (2007) Biochemistry 46:15018–15026

    Article  CAS  PubMed  Google Scholar 

  22. Iwema T, Picciocchi A, Traore DAK, Ferrer J-L, Chauvat F, Jacquamet L (2009) Biochemistry 48:6041–6043

    Article  CAS  PubMed  Google Scholar 

  23. Lillig CH, Berndt C, Vergnolle O, Lonn ME, Hudemann C, Bill E, Holmgren A (2005) Proc Natl Acad Sci USA 102:8168–8173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johansson C, Kavanagh KL, Gileadi O, Oppermann U (2007) J Biol Chem 282:3077–3082

    Article  CAS  PubMed  Google Scholar 

  25. Zhou N, Luo Z, Luo J, Fan X, Cayabyab M, Hiraoka M, Liu D, Han X, Pesavento J, Dong CZ, Wang Y, An J, Kaji H, Sodroski JG, Huang Z (2002) J Biol Chem 277:17476–17485

    Article  CAS  PubMed  Google Scholar 

  26. Elgán TH, Berndt KD (2008) J Biol Chem 283:32839–32847

    Article  PubMed  Google Scholar 

  27. Carrasco MR, Still WC (1995) Chem Biol 2:205–212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the National Institutes of Health [AI072443].

Author information

Authors and Affiliations

Authors

Contributions

SS and JAC designed the experiments and interpreted the results, CB designed and synthesized all the GSH analogs, SS performed the CD experiments. All the authors wrote the manuscript.

Corresponding author

Correspondence to J. A. Cowan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Bonfio, C., Mansy, S.S. et al. Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe–2S] cluster optical spectra and transfer chemistry. J Biol Inorg Chem 23, 241–252 (2018). https://doi.org/10.1007/s00775-017-1525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1525-5

Keywords

Navigation